BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO

N THE MATTER OF THE APPLICATION OF		Hasous
PUBLIC SERVICE COMPANY OF COLORADO		Δd
NATURAL GAS OF ITS ELECTRIC AND		
(DSM) PLAN FOR ${ }^{\text {Na }}$ (${ }^{\text {a }}$		2
2010 AND TO CHANGE ITSAR ELECTRS 2009 AND	DOCKET NO. 08A-366EG	F
DSM Cost adjustment rates Effective		E
JANUARY 1, 2009, AND FOR RELATED		3
WAIVERS AND AUTHORIZATIONS.		

STIPULATION AND SETTLEMENT AGREEMENT

I. INTRODUCTION

Public Service Company of Colorado ("Public Service" or "the Company"), the Staff of the Colorado Public Utilities Commission ("Staff"), the Colorado Office of Consumer Counsel ("OCC"), the Southwest Energy Efficiency Project ("SWEEP") and Western Resource Advocates ("WRA"), Colorado Energy Consumers ("CEC"), the City of Boulder and Boulder County (collectively "City"), Energy Outreach Colorado ("EOC"), the Governor's Energy Office ("GEO"), Wal-mart Stores, Inc. and Sam's West, Inc. (Wal-Mart"), The Kroger Co. on behalf of its King Soopers and City Market Divisions ("Kroger"), Nancy LaPlaca, the Energy Efficiency Business Coalition ("EEBC"), collectively referred to as the "Settling Parties", hereby enter into this Stipulation and Settlement Agreement ("Stipulation") resolving, as between these Parties, all issues that have been raised or could have been raised in Docket No. 08A-366EG relating to the Company's 2009-2010 DSM Biennial Plan. This Stipulation sets forth all the terms and conditions of such settlement.

The Parties to this Stipulation state that the results of the compromises reflected herein are a just and reasonable resolution of the issues addressed in this Stipulation, and that reaching agreement as set forth herein by means of a negotiated settlement is in the public interest. Each Party hereto pledges its support of this Stipulation and states that each will defend the settlement reached. The Parties respectfully request that the Public Utilities Commission of the State of Colorado ("Commission" or "CPUC") approve this Stipulation.

II. BACKGROUND

On August 11, 2008, Public Service filed its Application For Approval Of Its Electric And Natural Gas Demand-Side Management Plan For Calendar Years 2009 And 2010 And To Change Its Electric And Gas DSM Cost Adjustment Rates Effective January 1, 2009, and For Related Waivers and Authorizations. By Decision No. C080986, the Commission referred this matter to an administrative law judge (ALJ) for preparation of an initial Commission decision. On September 29, 2008, the ALJ issued Decision No. R08-1033-1 establishing pre-filing deadlines and setting this case for three days of hearings commencing on November 19, 2008.

Public Service's 2009-2010 DSM Biennial Plan is a combined electric and natural gas DSM plan under which the Company proposes to offer a total of 31 direct impact and 4 indirect impact DSM programs targeted to residential, business and low-income customer classes over the course of two years. The Company's plan also includes a Planning and Research component consisting of four additional programs: DSM Market Research; DSM Planning and Administration; DSM Product Development; and Evaluation, Measurement and Verification. As originally filed the Company's proposed
plan was designed to achieve annual electric and natural gas energy savings of approximately 181 GWh and 318,000 Dth, respectively, in 2009 and 244 GWh and 403,000 Dth, respectively, in 2010 , at a proposed total cost of $\$ 61$ million and $\$ 76$ million for 2009 and 2010, respectively.

By this Stipulation, the Settling Parties recommend that the Commission authorize the Company to implement the DSM plan as amended by the Stipulation, and grant it the discretion to modify the plan, within the limits set forth in the Stipulation, and consistent with the Company's commitment to use its best efforts to meet or exceed the energy savings and demand reduction goals approved in Docket No. 07A-420E with respect to the electric DSM plan and approved in this case with respect to its natural gas DSM plan.

iil. TERMS OF SETTLEMENT

The Settling Parties hereby stipulate and agree as follows:

1. The 2009-2010 DSM Biennial Plan. The Settling Parties agree that Public Service's 2009-2010 DSM Biennial Plan ("the DSM Plan"), as modified by the terms of this Stipulation, is consistent with $\S \S 40-3.2-103$ and $40-3.2-104$, C.R.S.; Decision Nos. C08-0560 and C08-0769 issued by the Commission in Docket No. 07A420E; and the Commission's Gas DSM Rules, 4 C.C.R. 723-4-4750 through 4760, except to the extent such rules have been waived as recommended in Paragraph 9 to this Stipulation.

The Settling Parties agree that Public Service has the discretion and the responsibility to manage the proposed gas and electric DSM Plan to meet and attempt to exceed the electric energy savings and demand reduction goals established by the

Commission in Docket No. 07A-420E and the natural gas savings goals established in this proceeding. In implementing the 2009-2010 DSM Biennial Plan, Public Service agrees to launch all of the programs identified and described in the DSM Plan and not to discontinue or significantly modify such programs except after notice as described in Paragraph 2.b supra.

The Settling Parties recommend that the Commission authorize the Company to implement each of the programs described in the DSM Plan, together with the amendments and additions to such programs that are described in Appendix A. The Setting Parties further recommend that, subject to the budgetary restrictions and other limitations described in this Stipulation, the Commission grant the Company the discretion to modify the specific DSM programs set forth in the DSM Plan as amended by this Stipulation, including but not limited to, changing the level of rebates paid to participants, shifting budget dollars between programs within the natural gas or electric DSM portfolios, and adding new programs or discontinuing DSM programs without the requirement to obtain the Commission's pre-approval of such modifications. The Company may in its discretion file an application seeking pre-approval of the technical assumptions associated with any new program offerings, or approval to incur costs in excess of 115% of its annual budget for its electric DSM portfolio or 125% of the annual budget for its natural gas DSM portfolio. The Settling Parties recommend that the Commission endeavor to act upon such an Application as expeditiously as possible.
2. Modifications to the DSM Plan.
a. Changes to the DSM Plan filed with the Application. In the course of negotiations, the Settling Parties have discussed with Public Service various
details of the Company's proposed programs and the associated technical assumptions. As a result of these discussions, Public Service has agreed to make certain changes to the DSM Plan originally filed with its Application. An updated version of the DSM Plan that reflects changes agreed to as part of this Settlement, together with errata correcting certain errors, shall be filed with the Commission within sixty days following issuance of a final Commission order approving this Stipulation.

The program-related changes that Public Service has agreed to make are summarized in Appendix A. Some of these changes require increases to the Company's originally proposed budgets which are also specified in Appendix A. The Settling Parties agree that the additional budget amounts for 2009 will be recovered over six months through adjustments to the electric and natural gas DSMCA filed on April 1, 2009 to be effective July 1, 2009. The full-adjusted budget amounts for 2010 will be recovered from ratepayers over twelve months beginning January 1, 2010.

Certain changes to the DSM Plan that Public Service has agreed to make will further result in changes in the expected electric and gas savings for 2009 and 2010. As a consequence of these changes, the Settling Parties agree to the modified levels of expected savings as set forth in Paragraph 6 below.
b. Process for Potential Changes to the DSM Plan in the Future. At the time of the quarterly roundtable meeting described in paragraph 10, interested persons may submit new program ideas or proposed revisions to existing programs to the Company in writing in a format to be provided by the Company. The Company agrees to act in good faith in considering new program ideas and proposed revisions to existing programs. The Company currently uses an initial screening process to score
and prioritize all new DSM program ideas for further research and development. Within three months of receipt, the Company agrees to evaluate all written DSM program ideas received from interested persons in accordance with its existing initial screening process and to consider all proposed revisions to existing programs and to report the results of such screening and consideration as part of its next written quarterly update. The Company retains discretion whether to implement proposed revisions to existing programs and new program ideas presented to it by interested persons.

In the event the Company decides to discontinue any DSM program identified in the DSM Plan, it shall provide ninety-days notice and the basis of such.decision to all persons who have asked to be included on the DSM Roundtable distribution list ("DSM Roundtable Distribution List"). The Company shall provide sixty-days advance notice to the DSM Roundtable Distribution List of any decision to add a new DSM program, to reduce rebate levels, to adopt new or discontinue existing measures, or to change technical assumptions or eligibility requirements for any DSM program. Persons receiving such notices shall have thirty-days following receipt within which to provide a response to the Company's notification. The Company agrees to act in good faith to consider any responses received in making its final decision regarding the proposed modification and/or discontinuation.
3. Self-Directed Custom Efficiency Program. As directed by the Commission at Paragraph 156 of Decision No. C08-0560, Public Service met with representatives of its large industrial customers who participated in Docket No. 07A420E as part of its planning for its Self-Direct Program. The Company also met with the large commercial customers and other interested persons who had participated as

Intervenors in Docket No. 07A-420E. The Settling Parties agree that the Company's proposed Self Direct Program shares many of the features of its proposed Custom Efficiency Program and should therefore be viewed as a subset of the Company's Custom Efficiency Program rather than as a traditional Self-Direct program. The only significant difference between the Company's proposed Self-Direct program and the proposed Custom Efficiency Program is that customers participating in the Self-Direct program will perform their own engineering evaluation of the anticipated energy savings and will conduct their own measurement and verification of achieved energy savings after the fact, resulting in a lower cost to the Company. The Company will verify the results of customers' energy savings calculations and evaluation, measurement and verification results. Participants in the Company's proposed Self-Direct program will pay the DSMCA just as all other participants in the Company's DSM programs.

In recognition of the fact that the proposed Self-Direct Program is designed to operate as a subset of the Custom Efficiency Program, the Settling Parties agree that the Self-Direct Program should be renamed, "Self-Directed Custom Efficiency Program." The Settling Parties agree to recommend to the Commission that it authorize the Company to provide rebates under the Self-Directed Custom Efficiency Program in any case where the customer meets the eligibility requirements, provided that the program has a Total Resource Cost (TRC) test value, as defined in $\S 40-1-102$, C.R.S., that is at least equal to one (1) rather than limiting this program to installations that have a TRC value at least equal to the TRC value for the overall DSM portfolio as specified in Paragraph 158 of Decision No. C08-0560.

The Company shall offer the Self-Directed Custom Efficiency Program to commercial and industrial customers who have an aggregated peak demand at all meters of at least 2 MW in any single month and an aggregated annual energy usage of at least 10 GWh . The customer of record must be the same for all meters aggregated to qualify for this program. The Company agrees that rebates will not be given under the Self-Directed Custom Efficiency Program for applications with expected paybacks of less than one year or paybacks greater than fifteen years. Rebate levels will be adjusted downward so that no project (with rebates included) has a payback less than one year. The Company agrees to track the expenditures, energy savings, and paybacks associated with each approved project under the Self-Directed Custom Efficiency Program.
4. Confidentiality of Participant O\&M Data. The Settling Parties understand that, in the absence of a written agreement signed by the Participant authorizing disclosure of the Participant's operations and maintenance savings or expense data ("Participant O\&M data"), all such Participant O\&M data shall be treated as proprietary and trade secret information that is privileged and highly sensitive. Accordingly, the Company agrees that, while Participant O\&M data shall be used to evaluate the cost-effectiveness of all DSM projects and programs that use the customefficiency analysis process, Public Service will not include Participant O\&M data in its incentive calculations unless it has been authorized to disclose such Participant O\&M data by written agreement as set forth above.

In the absence of a written agreement authorizing disclosure of Participant O\&M data, the Company agrees to treat Participant O\&M data as proprietary and trade secret
information that is privileged and highly sensitive and shall not disclose such information except as provided in this paragraph. For the sole purpose of achieving settlement in this proceeding, the Settling Parties agree that the Company may only disclose the results, by cost category, of calculations made using the privileged values, but not the values themselves, by making such results available for inspection by members of the Staff of both the Commission and the Office of Consumer Counsel at the Company's Colorado offices, pursuant to the following procedures. The Company will provide the Participant customer ten (10) business-days notice of the place and time of the inspection and provide the opportunity for a representative of the customer to be present during the inspection. The Company shall maintain a log of the persons, dates, times and documents reviewed. Participant O\&M data shall not be disclosed to any other party or by any other means, except after receipt of written authorization from the Participant. Within forty-five days following the end of each quarter, the Company agrees to provide a report to the Staff of the Commission and the Office of Consumer Counsel on the number and value of rebates spent on measures whose cost effectiveness depends on the Participant O\&M data (i.e., the TRC for the measures would be less than one (1) without the Participant O\&M data).
5. Participation by All Classes of Customers. The parties agree that, with respect to the targeted customer segments (i.e., residential, business, and low-income) and to the breadth of program offerings contemplated for each segment, Public Service's proposed electric and gas DSM portfolios, as set forth in the DSM Plan as amended by this Stipulation, have been designed to afford all classes of customers an opportunity to participate as required by $\S \S 40-3.2-103$ and $40-3.2-104$, C.R.S.
6. Energy and Demand Savings. The Settling Parties agree that Public Service shail use its best efforts to achieve at least 175.8 GWh in electric energy savings in 2009 and at least 237.5 GWh in electric energy savings in 2010, both of which exceed the energy savings goals prescribed by the Commission in Decision No.C08-0560 issued in Docket No. 07A-420E. These electric savings include a reduction of approximately 6 GWh each year due to a decrease in the Residential Home Lighting Program's Net-to-Gross ratio from .93 to .83 as explained in Appendix A. The Settling Parties also agree that the Company shall use best efforts to achieve at least 58 MW and 75 MW in demand reductions in 2009 and 2010, respectively, from its proposed electric energy efficiency programs and from its expanded Saver's Switch program. ${ }^{1}$ These demand reductions equal the demand reduction goals prescribed by the Commission in Decision No.C08-0560 issued in Docket No. 07A-420E.

The Settling Parties further agree that the Company shall use its best efforts to achieve natural gas savings of at least 318,141 Dth and 402,808 Dth for 2009 and 2010, respectively. The Settling Parties request that the Commission approve these levels of gas savings, in combination with actual gas program expenditures to calculate. dekatherms saved per dollar expended, as the energy targets that may be used in the future by the Company for the purpose of calculating a bonus under Rules 4754 and 4760.
7. 2009 and 2010 DSM Budgets. The Settling Parties agree to recommend that the Commission approve a total electric DSM portfolio budget for 2009 of $\$ 50,818,284$, and for 2010 of $\$ 63,650,147$, and a total gas DSM portfolio budget for

[^0]2009 of $\$ 12,628,529$ and for 2010 of $\$ 16,516,364$, including the increases to both the electric and gas budgets referenced in Paragraph 2 above and specified in Appendix A. The Settling Parties agree that the Company's proposed 2009-2010 DSM Biennial Plan and associated budgets as modified by the Stipulation were developed giving due consideration to the impact of the DSM Plan on non-participants and on low-income customers.

The Settling Parties agree that Public Service shall have flexibility to move budget dollars between specific programs and customer segments within its proposed gas DSM program portfolio and within its proposed electric DSM program portfolio in order to achieve the energy savings and demand reduction goals set forth in the DSM Plan, provided, however, that the Company shall not reduce the level of spending on low-income DSM programs unless the Company has achieved 100 percent of the forecasted level of participation in such programs.

The Settling Parties agree that so long as the total portfolio of natural gas DSM programs that are implemented by the Company reflects a benefit-cost ratio of at least one (1) calculated as provided in $\S 40-1-102(5)$ C.R.S., there shall be a rebuttable presumption that actual expenditures within 125% of the approved gas budget for any given plan year are reasonable and prudent. The Settling Parties agree that so long as the total portfolio of electric DSM programs that are implemented by the Company reflects a benefit-cost ratio of at least one (1) calculated as provided in §40-1-102(5) C.R.S., there shall be a rebuttable presumption that actual expenditures within 115% of the approved electric budget for any given plan year are reasonable and prudent. The Company shall not be precluded from spending amounts in excess of these limits.

[^1]However, if the Company's total expenditures in any year exceed 125% of the total approved gas DSM portfolio budget or 115% of the total approved electric DSM portfolio budget, the Company shall have the burden of going forward and the burden of proof with respect to the reasonableness and prudence of any expenditures exceeding 125% of any specific gas DSM program budget or 115% of any specific electric DSM program budget.

The Settling Parties agree that the company shall file an Advice Letter within sixty (60) days following issuance of a final Commission order approving this Stipulation that proposes to amend the electric and gas DSMCA tariffs to incorporate in the tariffs a process whereby the Company's DSMCA filings would be allowed to take effect by operation of law while a separate adjudicatory proceeding is initiated annually following the April 1 DSMCA filing by the Commission to review the prior year's DSM expenditures for reasonableness and prudence. The Setting Parties agree that the Commission should initiate such a prudence review proceeding automatically if the Company's total expenditures in any year exceed 125% of the total approved gas DSM portfolio budget or 115% of the total approved electric DSM portfolio budget. If the budgets are not exceeded, the Settling Parties agree that the Commission should initiate a prudence review proceeding if, after allowing interested persons an opportunity to comment, the Commission believes that an investigation into the reasonableness and prudence of Public Service's DSM expenditures is warranted. In any such prudence review proceeding, the presumptions and burdens of going forward and proof discussed in the paragraph above shall apply. If the Commission determines in a prudence review proceeding that a portion of the Company's DSM expenditures should not be recovered
from customers, the next April 1 electric or gas DSMCA filing, as applicable, shall be adjusted as appropriate to reflect that decision.
8. Technical Assumptions and Cost Benefit Calculations. The Settling Parties agree that the technical assumptions set forth in Appendix B attached hereto are reasonable for the purposes of:

- Developing a forecast of annual DSMCA expenditures associated with the Company's electric and gas DSM portfolios in 2009 and 2010;
- Establishing overall annual energy savings targets for 2009 and 2010 for the Company's gas DSM portfolio; ${ }^{2}$ and
- Determining savings achieved in 2009 and 2010 based on the actual project completions in each calendar year, where such savings are compared to the overall annual portfolio energy savings goals as established by the Commission in Docket No. 07A-420E for the Company's electric DSM portfolio and as established in this proceeding for the gas DSM portfolio, when calculating the electric DSM financial incentive pursuant to Decision Nos. C08-0560 and C08-0769 issued by the Commission in Docket No. 07A420E and in support of an application for a bonus under Rule 4760.

The Settling Parties agree that for purposes of calculating the gross savings associated with each of the prescriptive gas or electric DSM program measures offered as part of the gas and electric DSM portfolios, Public Service shall use the technical assumptions relating to the energy savings calculations for such measures actually

[^2]installed during calendar years 2009 and 2010. Such savings shall be referred to as "deemed savings."

The Settling Parties agree that the Company shall use the technical assumptions set forth in Appendix B relating to incremental customer O\&M savings (for prescriptive measures only), customer O\&M costs (for prescriptive measures only), incremental customer capital costs (for prescriptive measures only), net-to-gross ratios, and the deemed savings formulas and other technical assumptions set forth in Appendix B for purposes of determining program and portfolio cost effectiveness and for calculating annual portfolio net economic benefits based on measures actually installed during calendar years 2009 and 2010.

The Settling Parties agree that, for purposes of determining program and portfolio cost effectiveness and for calculating annual portfolio net economic benefits based on measures actually installed during calendar years 2009 and 2010, Public Service shall use the avoided cost assumptions set forth in Appendix E attached to the DSM Plan.

The Settling Parties agree that Public Service shall use the methodology described in the Direct Testimony of Company witness Jeremy Petersen for purposes of determining DSM portfolio and program cost-effectiveness based on measures actually installed during calendar years 2009 and 2010. Accordingly, Public Service shall use this same methodology for calculating the net economic benefit associated with DSM measures actually installed during calendar years 2009 and 2010.
9. DSMCA Tariffs. The Settling Parties agree to recommend that the Commission should grant waivers from its Gas DSM Rules to allow for changes to the gas DSMCA every six months in accordance with the following filing schedule:

- April 1 filings for gas DSMCA rates to be effective July 1, to recover DSM costs for programs that were implemented prior to January 1, 2009; Gas Bonus; and reconciliation of deferred balances from previous calendar year
- October 1 filings for gas DSMCA rates to be effective January 1 to recover current period DSM costs for the calendar year beginning the same January 1.

The Settling Parties agree that Public Service shall file in compliance with the Commission decision in this proceeding a gas DSMCA tariff, Sheets 42 to 42C, that conform to the pro forma tariff attached to this agreement as Appendix C, effective January 1, 2009.

The Settling Parties further agree to recommend to the Commission that it authorize the Company to implement changes in the gas DSMCA rates as set forth, for illustrative purposes, on Sheet 42D of the gas DSMCA tariff attached to this agreement as Appendix C. The Settling Parties recognize that the actual gas DSMCA percentage rider will be calculated to recover the 2009 gas DSM portfolio budget based on the rates that are approved to take effect as a result of the Commission's final order in Docket No. 08S-146G. The Settling Parties agree to recommend to the Commission that it authorize the Company to implement changes in the electric DSMCA rates as set forth on Sheet 107C of the electric DSMCA attached to this agreement as Appendix D. The Settling Parties recognize that rates included in the electric tariff sheets were designed
to recover $\$ 48,713,284$, which was the electric DSM budget as proposed in the Application, less the portion of those costs currently being recovered in base rates ($\$ 2,216,921$). Public Service shall be permitted to include in its April 1, 2009 DSMCA tariff filings the additional budget amounts for 2009 agreed to as set forth in Appendix A.
10. DSM Roundtable Meetings. The Company agrees to conduct quarterly DSM roundtable meetings in 2009 and will review this schedule with the parties for 2010. These meetings shall be open to all persons interested in the Company's DSM activities. Public Service shall provide quarterly written updates to all persons on the DSM Roundtable Distribution List as set forth in Paragraph 11. The Company agrees to post the agendas for such roundtables meetings and all quarterly updates on the Xcel Energy website.

11. Reporting Requirements.

a. Quarterly Updates. The Company agrees to file with the Commission in this docket and to provide to all persons on the DSM Roundtable Distribution List, within forty-five days following the end of each quarter, written quarterly updates, describing the implementation status for all programs included in the DSM Plan, including the energy and demand savings achieved, and expenditures made by program, and any changes in the way a program is being implemented.
b. Annual Reports. On or before April 1 following the end of each year of the Biennial Plan, the Company shall file an annual report of the results achieved during the previous plan year in total and by program, including achieved energy and demand savings, avoided annual and cumulative CO2 and SOx emissions
in metric tons, actual expenditures, expenditures expressed in terms of $\$ / k w h$ over the lifetime of the measures installed, and net economic benefits achieved.

12. Evaluation, Measurement \& Verification Plan.

a. On-Going Measurement \& Verification. The Settling Parties agree that the Company's proposal for on-going measurement and verification ("M\&V") as described generally in the Direct Testimony of Ms. Suzanne Doyle and in the Plan Documentation is reasonable and should be approved by the Commission. However, the parties also recognize that the Company is continuing to develop the specific activities that will be undertaken to measure and verify energy savings for particular programs. The Company agrees to provide a detailed description of the M\&V plan for each DSM program to all Settling Parties within 30 days after such plan is finalized. The Company will report any modifications made to its M\&V plans in its written quarterly updates referenced in Paragraphs 11(a) above.
b. Comprehensive Program Evaluations. In addition to the ongoing measurement and verification described in the plan, the Settling Parties agree that Public Service shall conduct comprehensive program evaluations of three or four specific programs each year. The comprehensive program evaluations of particular programs will be staggered over a number of years. The principal purposes of comprehensive program evaluations are to assess customer satisfaction with the DSM program being evaluated, and to assess changes that should be made to technical assumptions, net-to-gross (NTG) ratios and program processes based on the evaluator's own research as well as a thorough review of industry-wide and the Company's current processes, technical assumptions and NTG ratios. If, as a result of
a comprehensive program evaluation that is completed prior to December 31, 2009, the evaluator recommends changes to any technical assumptions, NTG ratios, or program processes, the Company shall implement such changes for purposes of its DSM activities undertaken during 2010. The Settling Parties understand that such changes shall not affect the calculation of achieved savings and net economic benefits for 2009.

The Settling parties recognize that the Company is currently conducting a comprehensive evaluation of the Business Lighting Program. The Company agrees that it shall plan to conduct Comprehensive Program Evaluations of the following programs during 2009, 2010, and 2011:

2009: Residential Home Lighting
Residential Saver's Switch
Business New Construction
Business Cooling
2010: Residential Evaporative Cooling
Business Motors
Business Recommissioning
Business and Residential Customer Behavior Change Program
2011: Low-Income Single Family Weatherization
Business Boiler Efficiency
Business Self-Directed Custom Efficiency
Residential Energy Star Retailer Incentive Program
The Company agrees to provide the non-confidential portion of all Comprehensive Program Evaluations to all persons on the DSM Roundtable

Distribution List. The Company will also consult with interested parties at the scheduled roundtable meetings regarding suggested changes to the programs that are proposed to be included as part of the comprehensive evaluation performed during 2010 and 2011.

IV. GENERAL PROVISIONS

The Settling Parties agree to join in a motion that requests the Commission to approve this Stipulation and to support this Stipulation.

This Stipulation is a negotiated compromise of issues raised in this proceeding relating to the Company's proposed gas and electric DSM plan for calendar years 2009 and 2010, the proposed changes to the electric and gas DSMCA to become effective January 1, 2009, and the requested waivers of the Commission's Gas DSM Rules. By signing this Stipulation and by joining the motion to adopt the Stipulation filed with the Commission, the Settling Parties acknowledge that they pledge support for Commission approval and subsequent implementation of these provisions.

Nothing in this Stipulation shall bind any of the Settling Parties with respect to any position such party may take in any subsequent biennial DSM Plan proceeding before this Commission. This Stipulation shall not become effective until the issuance of a final Commission Order approving the Stipulation, which Order does not contain any modification of its terms and conditions that is unacceptable to any of the Settling Parties. In the event the Commission modifies this Stipulation in a manner unacceptable to any Party, that Party shall have the right to withdraw from this Stipulation and proceed to hearing on the issues that may be appropriately raised by that party in Docket No. 08A-366EG. The withdrawing Party shall notify the

Commission and the Parties to this Stipulation by e-mail within five business days of the Commission's final order modifying the Stipulation that the Party is withdrawing from the Stipulation and that the Party is ready to proceed to hearing; the e-mail notice shall designate the precise issue or issues on which the Party desires to proceed to hearing (the "Hearing Notice").

The withdrawal of a Party shall not automatically terminate this Stipulation as to the withdrawing Party or any other Party. However, within five business days of the date of the Hearing Notice from the first withdrawing Party, all Settling Parties shall confer to arrive at a comprehensive list of issues that shall proceed to hearing and a list of issues that remain settled as a result of the first Party's withdrawal from this Stipulation. Within five business days of the date of the Hearing Notice, the Settling Parties shall file with the Commission a formal notice containing the list of issues that shall proceed to hearing and the list of issues that remain settled. The Parties who proceed to hearing shall have and be entitled to exercise all rights with respect to the issues that are heard that they would have had in the absence of this Stipulation. Hearing shall be scheduled on all of the issues designated in the formal notice filed with the Commission as soon as practicable.

The Settling Parties agree that the negotiations or discussions undertaken in conjunction with the Stipulation shall not be admissible into evidence in this or any other proceeding, except as may be necessary in any proceeding to enforce this Stipulation.

Approval by the Commission of this Stipulation shall constitute a determination that the Stipulation represents a just, equitable and reasonable resolution of all issues that were or could have been contested among the Settling Parties in the above-
captioned proceeding. The Setting Parties state that reaching Stipulation in this docket by means of a negotiated settlement is in the public interest and that the results of the compromises and settlements reflected by this Stipulation are just, reasonable and in the public interest.

All Settling Parties have had the opportunity to participate in the drafting of this Stipulation. There shall be no legal presumption that any specific Settling Party was the drafter of this Stipulation.

This Stipulation may be executed in counterparts, all of which when taken together shall constitute the entire agreement with respect to the issues addressed by this Stipulation.

Dated this 28th day of October, 2008.

PUBLIC SERVICE COMPANY OF COLORADO

Vice President, Policy Development
Xcel Energy Services Inc.
$122517^{\text {th }}$ Street, Suite 1000
Denver, CO 80202
Agent for Public Service
Company of Colorado
APPROVED AS TO FORM:

By:

1560 Broadway St., Suite 1400
Denver, CO 80202
Telephone: (303) 861-2828
Fax: (303) 861-4017
Attorney for Public Service Company of Colorado

Ronald E. Davis
Principal Economist
Colorado Public Utilities Commission
1560 Broadway, Suite 250
Denver, CO 80202
Telephone:
Fax:

APPROVED AS TO FORM:

JOHN W. SUTHERS
Attomey General

By:

Anne Botterud, $\$ 20726$
First Assistant Attomey General
Business and Licensing Section
Attomeys for Trial Staff of the Colorado Public Utilities Commission

1525 Sherman Street, fth Floor
Denver, CO 80203
Telephone: (303) 866-3867
Fax:
(303) $866 \cdot 5395$

COLORADO OFFICE OF CONSUMER COUNSEL

By:

P.B. Schechter

Rate/Financial Analyst
Office of Consumer Counsel
1560 Broadway, Suite 200
Denver, CO 80202
Telephone: (303) 894-2124
Fax:
(303) 894-2117

APPROVED AS TO FORM

By:

Christopher M. Irby, 35778
Assistant Attomey General
Office of the Attorney General
1525 Sherman Street, fth Floor
Denver, CO 80203
Telephone: (303) 866-5441
FAX: (303) $866-5342$
Attomeys for the Colorado Office of Consumer Counsel

SOUTHWEST ENERGY EFFICIENCY PROJECT

By:Ahwend peller
Howard Geller, Executive Director
Southwest Energy Efficiency Project
2260 Baseline Rd_{2} \#212
Boulder, CO 80302
Telephone; $503-447-0078$-1
Fax: 705-786-8054
hgeller@aswenergyorg

SOUTHWEST ENERGY EFFICIENCY PROJECT

By: \qquad
Howard Geller, Executive Director
Southwest Energy Efficiency Project
2260 Baseline Rd., \#212
Boulder, CO 80302
Telephone:
Fax:
hgeller@swenergyors

WESTERN RESOURCE ADVOCATES

By:
Steven S. Michel
2025 Senda De Andres
Santa Fe, NM 87501
Telephone:
Fax:
smichel@westerntesources.org

Thorvald A. Nelson
Holland \& Hart LLP
8390 E. Crescent Pkwy, $\# 400$
Greenwood Village, CO 80111
Telephone: (303) 290-1601
Fax:
(303) 290-1606
tmelson@hollandhatt.com

CITY OF BOULDER and COUNTY OF BOULDER

Sipgature block for EOC

Skip Arupld
Executive Director
Energy Outreach Colorado
225 E. $16^{\text {th }}$ Avenue, Suite 200
Denver, Colorado 80203
samold@energyoutreach.org

Jeffrey G. Pearson, 5874
1570 Emerson Street
Denver, CO 80218
Tel: 303.832.5138
Fax: 303.837.1557
jsplaw@qwestnet
ATTORNEY FOR ENERGY OUTREACH COLORADO

Skip Amold
Executive Director
Energy Outreach Colorado
225 E. $16^{\text {th }}$ Avenue, Suite 200
Denver, Colorado 80203
sarnold@energyoutreach.org
Aldugide
Jeffey, Pr. Prarson, 5874
1570 Emerson Street
Denver, CO 80218
Tel: 303.832 .5138
Fax: 303.837.1557
jgplaw@qwestoffice.net
ATTORNEY FOR ENERGY OUTREACH COLORADO

JOHN W. SUTHERS
Attorney General

Attorneys for Colorado Governor's Energy
Office
1525 Sherman Street, 5th Floor
Denver, Colorado 80203
Telephone: (303) 866-5117
FAX: (303) 866-3558
*Counsel of Record

KROGER COMPANY

Kurt J. Bochm, Esq.
36 East Seventh St., \#1510
Cincinnati, OH 45202
Telephone: (513) 421-2255
Fax: (513_421-2764
kbochm@BKLlawfirm.com
Attorney for Kroger Company

303-975-8513
P. 1
Nancy Laplaca 4801W. Yale Ave.
Denver CO 80219
nancylaplaca@yahoo.com
303-588-3937

Karl /F. Kumli, III, \#117\%4
Dieize \& Davis, PC 2060 Broadway, \#400
Boulder, CO 80302
Telephone: (303) 447-1375
Fax: (303) 440-9036
karlk@dietzedavis.com

of $\begin{aligned} & \text { Mark D. Detsky, \#35276 } \\ & \text { Telephone: (303) 915-2428 }\end{aligned}$ 井 $/ 1784$ mdeisky@gmaii.com

Attorneys for Energy Efficiency Business Coalition

WAL-MART STORES, INC. and SAM'S WEST, DNC.

Alexandria VA 22310
Telephone: (202) 302-3172
hollifaraysmithlayzcom

APPENDIX A

PROGRAM CHANGES AGREED TO BY PUBLIC SERVICE

Appendix A

Program Changes Agreed to By Public Service

a. Residential Air Conditioning Program. In addition to those programs identified in the DSM Plan as originally filed, the Company agrees to evaluate residential Air Conditioning program options during the first four months of 2009, including incentives for proper cooling sizing, high efficiency (SEER) central air conditioning units, air source heat pumps, and quality installation including tight/rightsized duct installation, and to implement a residential Air Conditioning Program by June 2009. The Company will file an amendment to the DSM Plan for informational purposes in this docket on or before May 1, 2009, describing the Residential Air Conditioning Program, including 1) Proposed Budget and Goals, 2) Application Process, 3) Marketing objectives, goals and strategy, 4) Program-Specific Policies, 5) Stakeholder Involvement, 6) Evaluation, Measurement \& Verification Plan, 7) Rebate Levels and 8) Technical Assumptions. The Company shall also provide the Benefit-Cost Analysis for the program for 2009 and 2010. The Settling Parties agree that the 2009 and 2010 DSM budgets shall be increased by $\$ 1.22$ million and $\$ 2.15$ million, respectively, based on the Company's goal of paying 2,000 rebates in 2009 and 4,000 rebates in 2010.

As part of the development of the Residential Air Conditioning Program described above, the Company agrees that it will work in good faith with designated representatives of the EEBC and GEO to evaluate modifications to the Central Air Conditioner Tune-Up Program that would allow it to successfully re-launch this program in June 2009 and meet a TRC of at least 1.0. The EEBC agrees to provide the

Company with access to any updated information it may have regarding energy savings associated with AVC tune-up and to provide the Company with a proposal for contractor training and program promotion to be provided by the industry that would support the successful implementation of this program. If the EEBC and the Company are able to reach agreement regarding re-design of the Residential Air Conditioning Tune-Up Program, Public Service will file an amendment to the DSM Plan for informational purposes in this docket by May 1, 2009 describing the Residential Air Conditioning Tune-Up Program, including 1) Proposed Budget and Goals, 2) Application Process, 3) Marketing objectives, goals and strategy, 4) Program-Specific Policies, 5) Stakeholder Involvement, 6) Evaluation, Measurement \& Verification Plan, 7) Rebate Levels and 8) Technical Assumptions. The Company shall also provide the Benefit-Cost Analysis for the program for 2009 and 2010. If the Residential Air Conditioning Tune-Up Program is added to the DSM Plan, the Setting Parties agree that the 2009 and 2010 budgets for the electric DSM portfolio shall be increased by $\$ 150,000$ and $\$ 250,000$, respectively.
b. Evaporative Cooling. In order to ensure that the Residential Air Conditioning Program does not adversely impact the proposed Evaporative Cooling Rebate Program, the Company agrees to expand this program by offering higher rebates for whole-house systems in 2009 and by evaluating broader marketing and builder/customer adoption strategies to be implemented by June 1, 2009. Builders will be eligible for rebates under the Company's Evaporative Cooling program. The Settling Parties agree that the 2009 and 2010 DSM budgets shall be increased by $\$ 280,000$ and $\$ 365,000$, respectively, to accommodate the expansion of the Evaporative Cooling Rebate Program.
c. Energy Efficient Showerhead Program. During the first quarter of 2009, Public Service agrees to evaluate modification of its Energy Efficient Showerhead Program to promote the use of low-flow showerhead with a flow rate of 1.5 gallons per minute rather than a showerhead with a flow rate of 2.0 gallons per minute as originally proposed and to implement such a modification during 2009 provided that the Company is able to identify units with a flow rate of 1.5 gallons per minute that can be obtained for a cost of $\$ 13.00$ per unit or less and provide adequate quality. So long as the Company can obtain 1.5 gpm showerheads for $\$ 13.00$ per unit or less it shall also include such showerheads in its Easy Savings Energy Kits available to low-income customers and in its School Education Kits. If the Company is unable to obtain 1.5 gpm showerheads for $\$ 13.00$ per unit or less, the Company may, in its discretion, choose to scale back participation levels in the Energy Efficient Showerhead Program and in the Easy Savings Energy Kit Program to allow it to promote the higher cost 1.5 gpm showerhead without a significant increase in the overall budget for these programs or it promote the 2.0 gpm showerheads through these programs and maintain participation rates as originally forecast.
d. School Education Kits. The Company agrees to expand participation in the School Education Kits Program to 15,000 participants during 2010. The Settling Parties agree that the 2010 DSM electric and gas budgets shall be increased by $\$ 385,000$ and $\$ 388,000$, respectively, to accommodate this expansion of the School Education Kit Program.
e. Residential Home Lighting. The Company agrees that the net-togross ratio to be used in calculating net energy savings associated with the Residential

Home Lighting program shall be .83 and have reduced the net savings goal for 2009 and 2010 by approximately 6 GWh each year to reflect this change.
f. Research on Emerging Technologies and New Product Development. The Company agrees to increase the budget provided for research on emerging technologies and new program development by $\$ 250,000$ for each year of the 2009-2010 DSM Biennial Plan. Of this $\$ 250,000$ increase, $\$ 175,000$ will be included in the updated electric DSM portfolio budget and $\$ 75,000$ will be included in the updated gas DSM portfolio budget.
g. Home Performance with ENERGY STAR Program. Prior to launching this program in the first quarter of 2009, the Company agrees to evaluate the following modifications to the Home Performance with ENERGY STAR Program: 1) extending the period within which the customer must complete the required and optional installations under this program from six months to up to two years, 2) requiring a blower door test as part of the initial Home Performance audit for homes meeting specifically defined criteria, and 3) to allow rebates to be given to customers as each measure is implemented. If both or either of these changes can be implemented without lowering the Program's TRC below a value of 1 and the EEBC and the Company are able to reach consensus regarding the criteria for when a blower door test will be required, Xcel Energy will incorporate such changes in its Home Performance with ENERGY STAR Program.
h. ENERGY STAR New Homes Program. Prior to launching this program on March 1, 2009, the Company agrees to re-evaluate the program design, including rebate levels, HERS ratings incentives, use of multiple HERS rating vendors
and providers, and Measurement and Verification. The Company agrees to work in good faith with EEBC, GEO, and any others of the Settling Parties who desire to participate, in evaluating and finalizing the program. Provided that a consensus can be reached regarding the redesign of this Program prior to March 1, 2009, the Company agrees to implement the agreed upon changes and will file an amendment to the DSM Plan for informational purposes in this docket, reflecting such changes by May 1, 2009. If consensus is not reached prior to the March 1, 2009 deadline for program launch, the Company will implement this Program as originally filed.
i. Insulation Rebate Program. The Company agrees to extend eligibility for rebates under the residential insulation rebate program to to electric only customers by the third quarter of 2009 if such an extension can be accomplished in a manner that meets a TRC of at least 1.
j. Coordination with local communities and other governmental agencies. In implementing its DSM programs, the Company agrees to use its best efforts to coordinate its efforts with those of local communities and other governmental agencies of which it is aware that have developed similar energy savings efforts. The Company shall encourage contractors that it hires to implement its DSM programs across multiple local jurisdictions to work with local contractors that are qualified to perform the work and whose rates are competitive.
k. Certification Standards. The Company agrees to require that all contractors or vendors providing home energy audits under the Residential Home Energy Audit, ENERGY STAR New Homes, or Home Performance with ENERGY STAR programs have RESNET and/or BPI certifications. The Company agrees to work
in good faith with the EEBC, the GEO, and any other interested party to establish certification standards for contractors and analysts who will be providing energy efficient services under programs where rebates will be provided.

APPENDIX B

TECHNICAL ASSUMPTIONS

DRAFT

This spreadsheet contains technical assumptions for the 2009/2010 Demand-Side Management Biennial Plan

The tabs in this file have been divided into three types:
All tabs with Deemed in the name describe how we will calculate actual conservation and net benefit.
All tabs with Forecast in the name detail how we came up with our estimates for program participation and performance for the filing period.
All tabs with Ref in the name are external references that support our assumptions.

Within each of the Deemed tabs, certain cells have been highlighted using the following convention:
Green - Energy savings calculation equatioh. $\quad \therefore: \quad . \quad$.
Light Yellow - Assumed values that are inputs to energy savings equations
Light Blue - Assumed values that are not inputs to the energy savings equations (incremenlal cost, measure life, etc.) but are included in benefit cost tests.

Prescriptive rebates will be offered for new Hot Water Boilers (Condensing and non-condensing), replacement of currenlly operating hot water boilers, steam traps. (commercial only), and various boiler improvements.

Algorithms:	
New Boiler Savings (Gross Dth)	= (BTUH - (BTUH \times EFFb/EFFh $)$) \times Hrs / 1,000,000
Boiler Tune Up savings (Gross Dth)	$=($ (BTUH \times EFFh/EFF, b) - BTUH $) \times \mathrm{Hrs} / 1,000,000$
Outdoor Air Reset savings (Gross Dth)	
Stack Dampers savings (Gross Dth)	$=($ (8 TUH \times EFFW $/$ EFFb) $-B T U H) \times$ H/5 $/ 1,000,000$
Modulating Burner Controls savings (Gross Dth)	$=$ (BTUH $^{\text {¢ EFFH/EFFP }-\mathrm{BTUH}) \times \mathrm{Hrs} / 1,000,000}$
O2 Trim Control savings (Gross Dth)	$=(\mathrm{BTUH} \times$ EFFh/EFFD-BTUH) \times Hrs $/ 1,000,000$
Steam Traps savings (Gross Dth)	$=$ Leak_Rate \times Leak_Hours \times BTU_per_Pound $/ E F F$ b
Net Dth	= Gross Dth \times NTG

BTUH	= Rated boiler Input BTUH nameplate data provided by customer on rebate form.
Hrs	boiler. 1004 hours will be used for space heating and 876 hours will be used for domestic hot water. Forecast Ref Boiler Op Hours work sheet which includes an oversizing factor of 54%.
EFFb	=Efficiency of Baseline boiler. Refer Table 2 below
EFFh	= Efficiency for higher efficiency boiler. Refer Table 2 below.
Leak_Hours	$=$ Annual hours boiler lines are pressurized $=6000$ hours (Refer Forecast Boiler Ancil Equip Calcs)
Leak_Rate	$=$ Leakage rate, pounds of steam per hour. High Pressure $=11$, Low Pressure $=5$ (Refer Forecast Boiler Ancil Equip Calcs)
8TU_Per_Pound	= 1164 日̈TU per pound for lost to atmosphere, 964 BTU per pound lost to condensate. Assume 50150 mix $=1064$ BrU per pound. (Refer Forecast Boiler Ancil Equip Calcs)

Measure Life	$=$ Length of time the boiler equipment will be operational $=20$ years. Low pressure Steam Trap measure life $=10$ years. High pressure Steam Traps $=4$ years Boiler Tuneup $=2$ years.
Basellne Cost	= Cost of the baseline technology. Cost for an existing boiler is $\$ 0$. Baseline cost for new application is assiumed to be the cost of 80% efficient unit based on customer provided size. Refer Table 1 below.
High Efficiency Cost	Incremental costs given based on customer provided size and efficiency. Refer Table 1 below.
NTG	Net-to-gross $=97 \%$, Reference 5.

Provided by Customer:
For boilers:
Boiler size (BTUH)
Boiler Efficiency (85% or 92%)
For steam traps:
High or low pressure Yes
incremental cost
For all but boilers and steam traps
Boiler size (BTUH)
Implemented measure
tncremental cost

Yes

Yes
Yes
Verified during M\&V:

Yes

No

Yes
No

Assumptions:

- Each boiler is replaced wilh the same size on a 1 for 1 basis.
- Only commercial boilers can receive prescriptive rebates, industrial boilers must go through Custom Efficiency.
- Climate zone assumed to be Denver for all boilers
- Prescriptive rebates are only given for boilers put into service, rebates are not given for backup bailers. Even though we do not rebate backup boilers, our assumed hours have been conservalively reduced to 65% of the predicted hours to account for boiler redundancy.
- Steam boiler has condensate return.
- Thermal Efficiency indicates the heat exchangers effectiveness to transfer heat from the combustion process to the water in the boiler, exclusive radiation and convection losses
- Assumed savings for topiler tune-up $=\mathbf{2 \%}$ for non condensing boiler. This is an average value of the two years, $\mathbf{4 \%}$ initial to no savings at the end of the two years. Life of product is 2 years. DOE states up 105%.
- Assumed savings for outdoor air reset on non condensing boilers $=3 \%$. Life of product is 20 years. The Natural Gas consortium states up to 5% savings
- Assumed savings for installing Stack dampers on non condensing boilers = 1%. Life of product is 20 years. Canada energy council, up to 4\%
-Assumed savings for modulating burner controls on non condensing boilers $=3 \%$. Life of product is 20 years. The Natural Gas consortium states up to 4% savings
- Assumed savings for O 2 trim controls on non condensing boilers $=2 \%$. Life of product is 20 years. The Natural Gas consortium stales of 2 to 4\% savings

	Non-condensing		Condensing	Incremental	incremental
	80\% eff.	85\% eff.	92\% eff.	$\begin{gathered} \text { Cost for } 80 \% \text { to } \\ 85 \% \text { eff } \end{gathered}$	$\begin{gathered} \text { Cost for } 80 \% \text { to } \\ 92 \% \text { eff } \\ \hline \end{gathered}$
175,000 Btuh	\$3,000	\$3.500	\$4,600	\$500	\$1,600
500,000 Btuh	3,5,000	59,000	\$11,200	\$4,000	\$6,200

Table 2, Boiler Efficlencies		
	Baseline Boiler Efficiency (EFFb)	Efficient Boiler Efficiency (EFFh)
New Boilers (Non-Condensing)	80.00%	86.00%
New Boilers (Condensing)	80.00%	96.20%
Boiler Tune Up	78.00%	80.00%
Outdoor Air Reset	80.00%	83.00%
Stack Dampers	80.00%	81.00%
Modulating Burner Controls	80.00%	83.00%
O2 Trim Control	80.00%	82.00%
Steam Traps	80.00%	N/A

References:

1. The baseline efficiency for the boiler is based on 2006 JECC, minimum of 80%, ASHRAE 90.1 , and Federal Energy Management Program (FEMP).
2. Bin Temp \& CO Bin Hrs are taken from ASHRAE, to determine operating hours. Value is 1880 hours for both space heating and domestic water production.
3. Did not account for altitude, since boiler equipment is manufactured for use in Colorado
4. Leakage data from Energy Management Handbook, by Wayne Turner
5. Net-to-Gross factor for Boiler Efficiency was calculated using $1 / 2$ of the free-rider factor for Cooling Efficiency.

	Non-condensing.		Condensing	Incremental	Incremental
Boiler Nameplate Capacity	80\% eff.	85\% eff.	92\% eff.	Cost for 80% to 85% eff	$\begin{gathered} \text { Cost tof } \\ 80 \% \text { to } 92 \% \\ \text { eff } \\ \hline \end{gathered}$
175,000 Btun	\$3,000	\$3,500	\$4,600	\$500	\$1,800
500,000 Btuh	\$5,000	\$9,000	\$11,200	\$4,000	\$6,200
1,000,000 Bluh	\$7,300	\$11;700	\$15,000	\$4,400	\$7,700
2,000,000 Btuh	\$12,000	\$17,000	\$26,500	\$5,000	\$14,500
4,000,000 Btuh	\$24,000	\$34,000	\$53,000	\$10,000	\$29,000
6,000,000 Btuh	\$38,000	\$51,000	\$79,500	\$15,000	\$43,500
8,000,000 Btuh	\$48,000	\$68,000	\$106,000	\$20,000	\$58,000
Boiler Tune Up	Actual costs	be provide	ed by customer		
Outdoor Air Reset	Actual costs	ill be provide	d by customer		
Stack Dampers > 750 Mbtuh	Actual costs	ill be provided	d by customer		
Stack Dampers > 750 Mbtuh	Actual costs	ill be provide	ed by custome.		
Modulating Burner Controls < 750 Mbtuh	Actual costs w	ill be provide	d by customer		
Modulating Bumer Controls > 750 Mbtuh	Actual costs	ill be provide	ed by customer		
O2 Trim Control	Actual costs	ill be provided	d by customer		
Steam Traps	Actual costs	ill be provide	d by customer		

DEEMED SAVINGS TECHNICAL ASSUMPTIONS

Program: Compressed Air Efficiency

Custom and prescriptive rebates will be offered under the compressed air program. Prescriptive rebates are avallable for Variable Frequency Drive Compressors that are less than 50 hp , and no air loss drain valves. Other measures may recelive rebates through the Custom Efficiency program. Each cusiom efficiency project will be analyzed individually by Xcet Energy. Engineering variables required for the analysis will be oblained from the customer or vendor. Analysis will be based on standard engineering melhodologies.

Algorithms:

VFD Comp Electrical Demand Savings (Cuslomer kW)	= HP \times Service Factor $\times 0.746 \times(\%$ Load b / Motor Effb - \% Load hidMotor_ Effin)
VFD Comp Eiectrical Energy Savings (Customer kWh)	=. Demand Savings. (Cuslomer kVV) X VFD Hours.
No Loss Air Drains Electrical Energy Savings (Cusiomer kWh)	= Numbersol "Drains x mWW per Drain x Drain Hours
Io Loss Alr Drains Electrical Demand Savings (Cusiomer kW)	= Niunber of Drabls x kW per Drain

Variables:	
HP	IFP of new Compressor provided by the customer
Service Factor	= Service factor of the molor, we will use 1.1 (Reference 1)
0.746	\square Standard conversion from HP to kW .
\%, Load_b	= Average percont loading for baseline compressar = 0.8952 as calculated on \%BHP to\% Flow tab
\% Load_h	: Average percent loading for VFD compressor $=0.61$ as calculated on \%日HP to \%Flow tab
Motor_Efib	= Efficlency of existing compressor molor as delermine in Table 1 using customer provided HP
Motor Eff h	- Efficiency of new compressor motor as determine in Table i using custorner provided HP
VFD Hours	= Operating hours of compressors from Table 1.
Drain_Hours	= Operating hours of compressed air systerns. We will use 6920 hours which is an average of compleled CO and MN custom compressed air projact hours.
Number_of Drains	= Number of drains replaced will be provided by the customer
kW_per Drain	I kW sawings per drain, we will use 0.53 kW per calculations on Forecast NLAD tab.
TDLF	Transmission-Distribulion Loss Factor $=6.39 \%$, the percentage loss of electricity as it flows from the power plant to the customer, calculated using factors from Enhanced DSM Filing SRD-2
CF_VFD	= Coincidence Factor - Probability that the measure peak demand reduction will occur at the same time as the grid peak demand, we will use 88.8% for small VFD compressors based on historic small VFD compressor projects in MN and CO.
CF_NLAO	= Coincidence Fector - Probability that the measure peak demand reduction will occur at the same time as the grid peak demand, we will use 88% for No Loss Air Drains based on historic custom compressed air projects in MN and CO .

NTG	Nei-10-gross = We will use 87\% for Compressed Air projects (Reference 2)
Incremental operation and maintenance cost	
Incremental Cost of Efficlent Equipment	= Incremental cost of efficient measures from Table 2. Compared to the do-nothing option.

Provided by Customer:	Verified durling Msiv:
Size of Compressor	Yes
Number of Drains	Yes

Assumptions:

VFD Compressors<50 hp
Compressed air system in which VFD compressor is insialled must have a capacily < 50 hp .
Existing compressor was a non-reciprocating load/no load lype with a minimum of 1 gallon of slorage per cfm capacily, or modulation with or without unload.
No Loss Alr Drains
Compressor must be one of the following:
Load/no-Load with at least 5 gal/CFM of storage (180 CFM compressor would need to have $5^{*} 180=900$ gailons of storage or more)
Variable Speed Drive compressor
Variable DisplacemenUCapacity compressor
Centrilugal compressors in their efficient trim range withoul any blowoff to atm.

Table 1. Motor Efficiencies from NEMA

Compressor HP	Motor Description	Existing Compressor Motor Efficiency	New Compressor Motor Efficiency.	Operating Hours
10	10 HP 1800 RPM ODP	89.5\%	91.7\%	3391
15	15 HP 1800 RPM ODP	91.0\%	93.0\%	3391
20	20 HP 1800 RPM ODP	91.0\%	93.0\%	3391
25	25 HP 9800 RPM ODP	91.7\%	93.6\%	4067
30	30 HP 1800 RPM ODP	92.4\%	94.1\%	4087
40	40 HP 1800 RPM ODP	93.0\%	94.1\%	4067

Existing Compressor Molor Efficiency values are from EPAC motols
New Compressor Motor Efficiency values are from NEMA Premium molors
Operating hours from completed MN and CO custom projects 2007-2008

Table 2. Incremental Costs tor Elficient Measures

10 HP VFD Compressor	
15 HP VFD Compressor	$\$ 10,841$
20 HP VFD Compressor	$\$ 14,018$
25 HP VFD Comprossor	$\$ 16,879$
30 HP VFD Compressor	$\$ 19,561$
40 HP VFD Compressor	$\$ 24,357$
No Loss Air Drain	$\$ 27,429$

Compressor prices are the average price from three retailers plus $\$ 1500$ for installation as calculated on VFD info tab
NLAD price is average of nine retailers prices as calculated on Forecasl NLAD tab
Changes from 2008
The 2008 Custom C\&I, Custom SB, and Compressed Air Efficiency prograns have been combined in the 2009 Custom Efliciency Program
Prescriptive rebales have been added for VFD compressors $<50 \mathrm{hp}$ and No Loss Air Drains

Roferences

(1) Service factor (1.1) from Compressed Air \& Gas Institute (CAGI) standards comparing Nameplate HP to actual BHP (00\% Full raled pressure and flow (2) National Energy Efficiency Besi Practices Report (hlip:/hwww.eebestpractices.com)

DEEMED SAVINGS TECHNICAL ASSUMPTIONS

Program: Cooling Efficiency

Prescriplive rebates will be offered for new cooling equipment. Rebates for most measures are dependent on size and on meeting a minimum efficiency. Additional rebates are available for better etficiencies than the minimum qualifying efficiencies.

Custom rebates are available for cooling-related Improvements that are not covered by the aforementioned prescriptive rebates. These would inctude such applicalions as heal recovery.

Algorthms: Conversions	
Energy Efficiency Ratio	E Seasonal Energy Elficioncy Ratiox $\times 0.85$
kWhon	=12/Energy Efficiency Ratio
For Rooftop Units, Water Source Heat Pumps, Split Systems, Condensing Units	
Cooling Electrical Energy Savings (Customer kWh)	= Sizo. \times EFLH \times (12SEER_Standard - 12SEER Eff)
Cooling Electrical Demand Sevings (Customer kW)	=Size \times (12FEER, Standard - 12JEER, Eff)
For Chillers	
Cooling Electrical Energy Savings (Cusiomer kWh)	= Size \times EFLH \times (IPLV Standard - IPLV Eff)
Cooling Electrical Demand Savings (Customar kW)	$=$ Size \times (FLV Standard - FLV Eff)
For Variable Alr Volume (VAV) Boxes	
Cooling Efectrical Energy Savings (Customer kWh)	
Cooling Electrical Demand Savings (Customer kW)	=\#_of_fans \times Savings \times ((cfm_per_fan / cim_per_ton) \times FLV + bhp_per_fan $\times 0.746 \times$ Load_Faclor) $]$
Electrical Energy Savings (Gross Generator KWh)	= Customer $\mathrm{kWh} /$ (1 -TDLV
Electrical Demand Savings (Gross Generalor kW)	= Cuslomer $\mathrm{kW} \times$ CF / (1-TDLV)
Electrical Energy Savings (Not Generstor kWh)	- Gross Generator kWh x NTG
Electrical Demand Savings (Net Generator kW)	= Gross Seneralor $\mathrm{kW} \times \mathrm{NTG}$
Varlables:	
Size	= The equipment capacity in lons, provided by customer
EFLH	= Equivalent Full Load Hours. The equivalent number of hours that the equipment would be running at full load over the course of the year. Values are shown in Table 2 for different building types and locations, to be provided by the customer,
SEER_Standard	= Seasonal Energy Efficiency Ratio in BtuMh of standard equipment, based upon the minimum acceptable efficiency defined by International Energy Conservation Code, 2006. Value delermined from table 1 besed on customer provided equipment type and size.
SEER_Eff	= Seasonal Energy Efficiency Ratio in EluNWh of High Elficiency equipment that the customer will install, provided by customer
EER_Standard	= EER of standard equipment, based upon the minimum acceptable elficiency defined by the International Energy Conservation Code, 2008, tor a specilic bype of equipment and slze. Tbate 1.
EER. Eff	E EER of High Efficiency that the customer will Install, provided by customer.

FLV_Standard	= Full load cooling efficiency in $\mathrm{kW} /$ ton of standard equlpment, based upon the minimum acceplable efficiency defined by international Energy Conservation Code, 2006 for chiller type and size (type and size provided by customer). Table 1
FLV_EfI	= Full Load Value cooling efficiency in kWhlon, representing the efficiency at design conditions, provided by customer
IPLV_Standard	= Integrated Part Load Value (representing the average efficiency over a range of loeded slates) cooling efficiency in kWhon of standard equipment, based upon the milnimum acceplable efficiency defined by international Energy Conservation code, 2006 for chiller type and size (type and size provided by customer). Table 1
PLV_EEf	= Integrated Part Load Value (representing the average eficiciency over a range of loaded states) cooling efficiency in kWh on of High Elficiency equipment, provided by customer.
CF	= Coincidence Factor, the probability that peak demand of the molor will coincide with peak utility syslem demand. 0.90 will be used for prescriptive rebates (1).
Measure Life	Measure lifo.is taken:al 20 years lor all cooling equipment. (Reference. 2)
\#_ol fans	= Number of lans provided by customer
cfm_per_ton	- Cubic feet per minute of aiffow, typical amount of supply air per ton of cooling, 400 is a standard value used in the Colorado industry (5)
FLV	= Full Load Value of Chiller, taken to be 0.6 kW Wlon Ior VAV (5)
Savings	=Savings factor assaciated with Variable Air Volume conversion, taken lo be 15% (5)
Load Factor	$=$ Average fraction of tuil load operation, taken to be 80\% (5)
bhp_per_tan	= Brake horsepower per fan, taken to be 1 bhp (5)
TDLF	Transmission-Distribution Lass Factor $=6.39 \%$, the percentage loss of electricity as it fows from the power plant to the customer, calculaled using factors from Enhanced OSM Filing SRD-2
NTG	Net-to-gross = We will use 94\% for cooling projects (6)
Incremental operation and maintenance cost	=0-conservalive-approach, laking no credil tar improved mean time between failure.

Provided by Customer:	Verif
For all but VAV:	Yes
Cooling equipment type	Yes
Cooling equipment size (tons)	Yes
Cooling equipment efficiency (SEER, EER, IPLV,	kWhon - dependent on the lechnology)
Climate zone	Yes
Building lype	
For VAV:	Yes
\# ol Variable Air Volume Boxes	Yes
\# ol fans	Yes
Climate zone	Yes

Assumptions:

- Assumptions:
- Prescriplive rebates are not given for backup cooling equipment.
- Some equipment is rated in only EER or SEER. To convert a Seasonal Energy Efficiency Ratio (SEER) to an Energy Efficiency Ratio (EER), mulliply SEER by 0.85 . The conversion factor of 0.85 a generally accepted factor for convering from SEER to EER. Once EER is oblained, convert EER to kWitor using the following equation: kWhion a 12/EER. To convert kWiton to kW , multiply by tons.
- VAV = Variable Air Volume

Table 1. Excerpl from Deemed Baseline Efficienc tab

Equipment	Equipment Classification	FLV (kW/ton)	IPLV (kW/hon)	$\begin{gathered} \text { Incremental } \\ \text { Cost } \\ \hline \end{gathered}$
Centrifugal Chiller (150-300 tons)	Standard Efficiency	0.83	0.80	-
Centrifugal Chilier (150-300 (ons)	High Elficiency			\$20,000

Table 2. Equivalent Full Load Hours by Building Type - Merket segment hours scaled trom Mianesota OES data (Reference 3) with Office value calculaled for Denver and Grand Junction Typical Maleorological Year data. Distributions developed from CBECS data (Relerence 4)

Building Type	Front Range EFLH	Western Slope EFLLH
Education - Community College	725	844
Education - Secondary School	456	531
Education - University	981	1,142
Health/Medical - Clinic	833	989
Heallh/Medical - Hospital	1,616	1,880
Lodging	1,358	1,578
Office	1,102	1,283
Retal	975	1,135

EFLH*

Changes from 200B

Baseline efficiencies updated. Cost information updated from various sources. Methodology fow look at markel segment rather than a single Equivalent Full Load Hours value for all participants and measures.

References

1. NYSERDA (Now York State Energy Research and Development Authorky): NY Energy \$mart Programs Deemed Savings Database - Source for coincidence factor 2. ASHRAE. 2007, Applications Handbook. Ch. 36, table 4, Comparison of Service Life Estimates
2. Arkanses Deemed Savings Quick Stert Program Draf Report Commercial Measures Final Report - source of equivalent full load hour methodology for segments 4. CBECS (Commercial Buildings Energy Consumption Survey), 2003 - Total Floor spece of Cooled Buildings by Principal Building Activity - source of market segment distributions
3. Derived by Eugene Scales and Assoctates
4. NTG factor from National Energy Efficiency Best Practices Report (http:/hww.eebestpractices.com)

Building Type	Zone 1 EFLH-MOES
Education - Community College	560
Education - Secondary School	352
Education - University	758
Health/Medical - Clinic	643
Health/Medical - Hospital	1,248
Lodging	1,047
Office	851
Retail	753

weighting Factors for Zones - - -	10\%	90\%
Building Type	Western Slope	Front Range
Education - Community College	844	725
Education - Secondary School	531	456
Education - University	1,142	981
Health/Medical - Clinic	969	833
Health/Medical - Hospital	1,880	9,616
Lodging	1,578	1,356
Office	1283	1,102
Retail	1,135	975

Equipment	Equipment Classification	SEER	EER	FLV(kWhton)	IPLV (kW/hon)	Incremental Cost 3
Rooflop Unils less than 5.4 fons	Stanöard Etficiency	10.0	B. 5			
	High Efficiency					600
Roonlop Unils 5.5-19.3 tons	Standard Efficiency	11.9	8.9			
	High Efficiency					2.500
Reotop Unils 11.4-19.9 ions	Standard Efficiency	11.2	9.5			
	High Efficiency					3.750
Rooftiop Units 20-63.3 tons	Standard Efficiency	9.5	9.3			
--	High Efficiency					7,500
Rootiop Units grealer than 63.3 tons	Standard Efficiency	9.2	8.0			
	High Efficiency					31,250
Variable Air Volume Conversion	Standard Etficiency		10.0	0.60		
	High Éfriency					290
Split Systems less than 5.4 ions	Standard Efficiency	10.0	9.7			
	High Efficiency					600
Condensing Units > 5.4 tons	Standard Efficiency	11.2	10.1			
	High Efficiency					2.500
Water-source Heat Pumps	Standard Efficiency	12.4	11.2			
	High Efficiency					750
PTAC	Standard Efficiency	11.2	9.1			
	High Efficiency					188
scrollscrew chiller < 150 tons	Standard Efficiency			0.79	0.78	
	High Efficiency					12.500
scroll/screw chiller 150 to 300 tons	Standard Efficiericy			0.72	0.71	
	High Efficiency					16.000
Centritugal Chillers < 150 tons	Standard Efficiency			0.70	0.70	
	High Efficiency					12.500
Centifiugal Chillers 150-300 tons	Standard Efficiency			0.63	0.63	
	High Efficiency					20.000
Centifugal Chillers > 300 lons	Standard Efficiency			0.58	0.58	
	High Efficiency					90,000
Air-Cooled Chillers - avg capacity 250 tons	Standard Effriciency			1.41	1.41	
	High Efflciency					8.608

CUSTOM SAVINGS TECHNICAL ASSUMPTIONS

Program: Custom Efficiency

Customer may apply for rebate under the Custom Efficiency Program for gas or electric projects not listed under prescriptive rebate programs. Each Custom Efficiency project will be analyzed individually by Xcel Energy. Technical variables required for the analysis will be oblained from the customer or vendor. Analysis will be based on standard englneering methodologies.

Calculations:
Electrical energy savings and electrical demand savings will be calculated based on the project specific details. Each project will undergo an engineering review in accordance with standard engineering practices. The review will be in accordance with the calculation methodologles detailed in tie prescriptive programs where applicable.

A net-to-gross factor of 87% will be used for electric custom projects, referenced National Energy Efficiency Best Practices Report (http://Www.eebestpractices.com) A net-to-gross factor of 93% will be used for custom gas projects which assumes $1 / 2$ of the free rider rate for electric becasue gas progrants are new offerings in Colorado.
A transmission distribution loss factor of 6.39% will be used for Custom Efficiency projects. This is calculated using factors from the 2007/2000 DSM Biennial Plen; no signifitant system changes have been noted since then.

Product Life will be evaluated for each project, lives for end use technologies will be in accordance with prescriptive programs where applicable
Operation and Maintenance Savings will be evaluated for each project.
Changes from 2008
Rebate levels and minimum payback criteria were updated from 2008.

Program: Data Center Efficiency

This is a custom program. Customer may apply for rebate under the Data Center Efficiency Program for projects not listed under prescriptive rebate programs. Each Data Center efficiency project will be analyzed individually by Xcel Energy. Technical variables required for the analysis will be obtained from the customer or vendor. Analysis will be based on standard engineering methodologies.

Calculations:

Electrical eriergy savings and electrical demand savings will be calculated based on the project-specific details. Each project will undergo an engineering review in accordance with standard engineering practices. Where prescriptive elements exist, the review will be in accordance with the calculation methodologies detailed in the prescriptive programs.

A net-to-gross factor of 90% will be used for Data Center projects, reference National Energy Efficiency Best Practices Report (hitp://Mww.eebestpractices.com)
A transmission distribution loss faclor of 6.38% will be used for Data Center projects. Reference the Enhanced DSM filing, SRD-2; no significant system changes have been noted since then.

Assumptions:

Operation and Meintenance Savings will be calculated for each specific project based on project details. study rebate at 50% of cost not to exceed $\$ 15,000$
for retrofit lighting assume no change in number of fixtures virtualization at ratio of $15: 1$

Changes from 2008
This is a new program for 2009.

Program: Easy Savings Energy Kit

A package of home energy efficiency medesuras in a kit that can be distributed to low-income customers through low-income agencies. Each participant recaives a kil contaning a highefficiency showerhead, a kitchen sink aerator, and two compact fluorescent bulbs, in addition to other items such as a thermameter, filter alarm, leak datection tablat, night light and tape measure.

Algorithms:	
CFL Electric Energy Savings (Customer kWb)	\# (kW base-kW affix Mr use $=$ Savings; $\leq 1(60-14) / 10000+(75-19) / 1000) \times 1,210 \mathrm{hr}=123 \mathrm{kWh} / \mathrm{yr}$ per kit
CFL Electric Pamand Savings (Cusiomer kW)	
Showerhead Energy Savings (Gross Dih)	İ (GPY Saved \times Della $T \times 8.33$) 1 HGE \times SPD/100000;
Aerator Energy Savings (Gross D(h)	
Electrical Ereergy Savings (Gross Generator kWh)	\# Customer kWh:/ (17 TDLF).
Electrjcal Domand Savings (Gross Generator kW)	
Electrical Ériergy Savings (Net Generator kWh)	T-Gros'sxGenerator KWh \times NTG
Electital Ditmand Savings (Net Generator kW)	-Grosst'enerator kNe X X NTG
Net Dih	- Gross Dth x NTG
Variables:	
Number of Eulbs	= Number of bulbs provided in each kit =2.
Hrs	= Annual operational hours per year of the fixture. Wa will use 1210 hours which represents the average operating hours for the firs 5 CFLs installed in a house. (Reforence 1)
CF	= Colncidence Factor, the probability that peak demand of the lights will coincide with peak ulility system demand. 0.08 will be used for prascriplive rebates (Ref 2)
kW_EE	* Eulb wattage per supplied CFLs; $=14 \mathrm{~W}$ and 19 W . Thase arp in tha mo bulb kit.
kW_ Base	= Bulb waltage replaced by supplied CFLs; $=60 \mathrm{~W}$ and 75 W .
GPY_Saved	= Gallons per year of hot waler saved with high-efficiency showerhead (for one ahower per day) or aerator assuming 65% of water flow is hot water. Showerhead $=1635$ gallons per year per shower, Aaralor $=423$ gallons.
Delta_T	- Change In temperature of water from incoming water lemperature to water hester temperature setting. Datita_T is 74 dagrees F. (Reference 5)
HGE	= Heal generation elficiency based on siesdy-state watar heater efficiency. Usod vatua ol 0.76 . (Relerenca 3)
SPD	= Number of showers per day $=1.32$ based an 2.64 people per home and 2 bathroams (Relerence 5)
Incremental Ciosts	\# Incremental costs of measure as soen in Table 1.
Transmission Distribution Loss Factor (TDLF)	Transmission Distribulion Loss Factor $=\mathbf{7 . 1 4 \%}$, the parcentage loss of eleciricity as it fows from the power plant to the customer, calculated using factors from Enhanced DSM Filing - SRD-2
Net-10-Gross Factor (NTG)	= We will use 100\% for school education kids as these kits would nol be available wilhoul the program.
O8M savings	= Operation and Maintenance savings aro assumed to be zere for the easy savings energy kits.

Table 1. (Reference 1,6)

Measure	Moasure Life	Incremental Coat
CFLS	6.61 vears (Relerence 1)	\$20.57
Shower heads	6 years (Reference 6)	\$10.28
Faucel aerntors	5 years (Relerence 6)	\$10.26

Provided by Customer:	Vorified during Mèv:
Number of kits distributed	Yes

Changes Frown 2008:
This is a new program for 2009

References

1. US DOE US Lighting Market Characlerization Sudy 2002
2. Composite Watlages. Operating Hours and Colncldence from CFL METERING STUDY FINAL REPORT, Prepared Ior: Pacilic Gas \& Electric Company San Diego Gas \& Electric Company, Soulhem Califomia Edison Company, 2005
3. Department of Energy Domestic Hot Water Applance Calculator
4. Japanese study: "The effects of variation in bedy temperature on the prefered water temperature and flow rate during showering"

Authors: Tadakatsu Ohnake, Yutake Tochihara, Yumiko Watanabe. Affiliations: a) Dopartment of Physiological Hygione, The Inslitute of Public Heallh, Minato-ku, 'Tokyo, Japan; b) Faculty of Home Economics, Jissen Women's University, Hind, Tokyo, Japan
5. Handbook of Water Use and Conservation, Denver Water Conservetion
6. CALMAC: California Masasurement Advisory Committee.

DEEMED SAVINGS TECHNICAL ASSUMPTIONS

Program: Energy Efficient Showerheads

Residentital natural gas customers are eligible io racelve a free high efficiengyshowerhead to halp reduce energy and waler use.

Algorithms:

howerhead Nalural Gas Savings (Gross Dili)	Sjuve
	+h

GPY_Saved	I Gallons per yevar of hot water saved with high-fliciency showerhead (for one shower per day) assuming 65% of water flow is hot water. Showerhead $=1680$ gallons per year per shower (Reference 2)
Della_ ${ }^{\text {T }}$	-Change in temperature of water from incoming water temperalure to waier heater temperaturé setifing. Delia_T is 74 degrees F. (Reference 1).
HGE	"Heat generation efficiency based on steady-state water heater efficiency. Used value of 0.76. (Reference 1)
SPO	- Number of showers por day z 1.32 based on 2.84 people per home and 2 balhrooms. (Reforence 3)
8.33	Conversion from gallons io pounds of water
Incremental Costs	=cosis provided bly venidor, $=5.5$ per showertigad
NTG	= Nel-to-Gross Facior - We will use 70\% for showerheads. (Reference 4)
O8M savings	= Water savings are assumed to be 1258 galions per year © \$ $\$ 0.003 / \mathrm{gallon}$ - 53.77 per shower head
Measure Life	=10 y years

Provided by administrator:	Verified during M8V:
Showerhead received by customer	Yes
Showerhead instelled by customer	Yes

Showerhead installed by customer
Yes

Assumptions:
$\mathbf{- 2 . 5} \mathrm{gpm}$ replaced with $\mathbf{2 . 0} \mathrm{gpm}$, resuling in $\mathbf{1 , 6 6 0}$ gallons of annual water savings per shower. (reference 2)

- 1.32 shower's per day at 0.9 minutes per shower (reference 2,3)

Changes From 2008:
This is a new program for 2009
References

1. Departmert of Energy Domestic Hot Water Appliance Calculator
2. Japanese study: "The effects of varialion in body temperature on the preferred water temperature and flow rate during showering"

Authors: Tadakatsu Ohnaka, Yutaka Tochihara, Yumlko Watanabe. Affliations: a) Department of Physiological Hygiene. The Institute of Public Health,
Minalo-ku, Tokyo, Japan; b) Faculty of Home Economles, Jissen Women's University, Hino, Tokyo, Japan.
3. Handbook of Water Use and Conservation. Denver Water Conservation
4. Net-to-Gross factor is an assumed installation rate for showerheads based on Xcel MN study and aggressive CO follow-up

Energy Management System/Controls (EMS) SAVINGS TECHNICAL ASSUMPTIONS

Program: EMS Efficiency

This is a custom program including both gas and electric measures. Customer may apply for rebate under the EMS Program. Each EMS project will be analyzed individually ly Xcel Energy. Technical variables required for the analysis will be obtained from the customer or vendor. Analysis will be based on good engineering practices and standards.

Calcutations:
Electrical and gas energy savings and electrical demand savings will be calculated based on the project-specific details. Each project will undergo an engineering review in accordance with standard engineering practices. Where prescriptive elements exist, the review will be in accordance with the calculation methodalogies detailed in the prescriptive programs.

Assumptlons:
A net-to-gross factor of 87% will be used for electric measures and a net-to-gross factor of 93% will ne used for gas EMS projects, reference National Energy Efficiency Bisst Practices Report (http:/hwww.eebestpractices.com). Gas measures will assume one half of the free fider factor of electric because gas measures are new to C:olorado.
A transmission distribution loss factor of 6.39% will be used for EMS projects. Reference the Enhanced DSM filing, SRD-2; no significant system changes have been noted :since then.
for retrofit lighting assume no change in number of fixtures

Operation and Maintenence Savings will be calculated for each specific project based on project details. Life of product is 10 years.

Changes from 2008
Gas measures have been added to the program for 2009.
Measure life for the program have been changed form 7 to 10 years.

DEEMED SAVINGS TECHNICAL ASSUMPTIONS

Program: ENERGY STAR New Homes Rebates

Residential nalural gat and electric cuslomers naceive a cash rabale for implementing ENERGY STAR energy effictencies.

Algorlthme:	
Requlrad measumes savings (Customer kW)	(Baseline HERS - Measured HERSS \times kW per HERS
Required me:itsures savings (Cusiomer kWh)	E (Baseline HERS-Moasured. HERS) \times kWh per HERS
Required mensures savings (Gross Dih)	
20 CFL s Electric Energy Sawings ($\mathrm{k} \mathbf{W h}$) and Electric Oemand Savings (kW)	Energy and demand savings and anmual hours of operation for compact Tuorescant lamps are bssed an dala and caledations derived from the 2002 US Lighting Markel Characterixation performed for the Department of Eneroy in 2002. Energy savings are 940 kWh and demand savings ara 0.93 kW .
Clothes washer natural gas savings (Dth) and electric energy savingis (kWh)	Energy ssvings for the clotherswasher wate based on the Enargy Star Clotharswasher Savings Calculalor: htips/hww.onergystar.gowindex, ctmic=elolhaswash.pr_elothes_washers. This assumad a gas waler hater home, so sovings are ganerated for gas and alecric. Savings is $\overline{0} .88$ Dits and 26 Kwh .
Dishwasher rulured gas savings (Dit) and electric energy saving\|s ($\mathbf{K W h}$)	Energy sawings for the dishwasher wera based on the Energy Star Dishwasher Sawirgat Calculator: hitp:/hww,energyslar.goviindex.cinife=dishwish.pr_dishwashers. This assumed a gas water haaler home, so sawings are generated for gas and etectic. Savings is 1.27 Dih and 77 kWh .
Refrigarator electric encrgy savings (WWh)	Envergy spyings for the relingoralor were based on the Energy Star Refigerator Savings Caltulator: Mitp:/hww,energyslar.gowilindex.cim?cerefrig.pr_refingerators. Savinge is 93 WWh.
Net Dih	= Gross Dill \times NTG
Eleciricas Energy Savings (Gross Generator KWWa)	a Customer kWh I (1-TDLF)
Eleclicioal Dernand Savings (Gross Generalor kW)	\pm Customoir kW x-CE / (1+TOLF)
	- Cross Generalor kWh x NTG
Electrical Demand Savinge (Net Generalor kW)	E Gross Generalor kW X NTG
Variablot:	
Basaline_HEITS	
As_Eult_HEFSS	- Home Energy Rating Sysiem for conslruciod mome, caicuaned for Each home.
KW per HEES	$\text { = } 0.0024 \mathrm{kN} \text {, based on average lotor runnibg lime of lume }$
KWh per HERS	区 6.1 kWh per HERS polnt, bated on simulated ENERGY STAR nome wither
Dih per HEFPS	= 0.98 Din per HERS point, basted on simmaied ENERGY SiAR
	Transmustion Disuribution Loss Factor $=7.14 \%$, the percentage loss of eletricily as in hows from ine power plant la Cuslomer, calculated using lactors from Enhanced DSM Fling SRD. 2
CF	Coincldence Factor $=$ the probatifity that peak demand of tha lighls will coincide with peak ullilily system demand from Table 2
NTG	Ner-to-Eross Factor $=$ We will use 94\% bated on reference 5.
	Operetion and Mainlenance savings = We will assurne no DaM savings,

Location	Square Footage of romo	Egaedino HEAS	Herts or Robata Eltgibilky
Cily of Boudder	3,000 and below	70	60
Cily of Bouder	3,001-5,000	60	51
Cliy of Bouldis	5,001 or above	35	30
Mountain Commurildes	All	100	80
Other Aress	AII	100	85

Typo of manasura:	Meagure llfo:	Incremontal cost:	Colncidoncn fattor:
Ceiling insulation	20 years (Reference 1)	5200. (Referencte 8)	/N/A
HE lumpce AFUE 92\%	18 yetats (Reforento 12)	\$331 (Reference 13)	N/A
ACH reduction	10 years (Rafereñico 1)	\$550. (Reference 7)	N/A
Water heater 57 lo 62 EF	15 years (Refrererice 1)	\$55.5 (Relertince 13)	M
CFLE	8.2yelats (Referente 9)	\$71 (Relertmee 10)	8\% (Reference 13)
Clollies washer	11 yetars (Roflerence 16)	5200 (Rieference 14)	4,47\% (Reference 14)
Dishyasher	11 years. (Reference 15).	530 (Reference 14)	2.45\% (Reference 14)
Refrigerator raplacament	13 years (Relerence 14)	530 (Referemce 14)	100\%

Providad by Customer:	Vorilled during Mav:
Home size inlo and lype of equipment	Yes
HERS scare	Yes
Blower door test	Yes

Assumptiones:
The baseline hame had an existing level of insulation in the altic of R-38 and the change case had an elevaled Insutalion lavel of R-44.
The begelline home hed an existing ACH of 7.08 and the change case was 4.6 ACH .
The baseline furnace had an AFUE of 78%, which is the federal minimum efficiency samdard
The baseline water healer is a 40 gallon capatily with an 57 EF.

Trus is a new nrogram for 2009
Building Charzeterlstics for Standerd Home Uned for Modgoling:
Single famit home
Two slories with unfindshed condilloned basemant
Five bedrooms, two balhroom
2450 squaro feel above grade, 1225 aquare feel pelow grada
Basemenl
HVAC: Gss Fumace and Contral AC
Oriendalion: Square home whth each of the four slides facing one of the
cardinal direclions wilh the same amount of window space on each orienkation
2 foot roof overhangs
Roofing maierial: composile ahingles - medium color
Doors: wood
The duct supply, duct return and ar handler are in condilioned space
No shading was assumed
Relopancos:

1. Colifornia Measurement Advisory Commethes (CALMAC) Protocols, Appendix F (www.calnac.orglevents/APX_F.pd)
2. 2006 Residenlual Energy Use Colorado Service Aves - Xeel; Biruce Neilson
3. Americari Housing Survey for Denver - US Census Bureau

4, Xcal Ene:gy CO DSM Polenlial 2006 - prepared by Kema
. National Energy Efficierty Best Practices Study - Reskiential Single-Family Comprthensive Weatherization Besi Practices Reporl from December 2004.
6. RS Means Repair and Remodeling 2007 at a coss of $\$ 0.028$ per square foot per increase in R-wakue.
7. Nalional Energy Audll Tool (NEAT) and Frontier estimalos.
8. EEBP whbl the - Tacoma Residenulal Wealherizalion program.
9. US Liqhting Markel Characterizntion Sludy performed for the Departmenl of Energy in 2002
10. MEEAV:S Change A Light campaign inlo
11. Xcel Energy es limale
12. Orafi Technical Suppor Document: Energy Conservallon Slandarde tor Reskdential Furnaces and Boilers, Effictancy Stundards for Consumer Prodiucla

Prepared for US DOE, Sepiember 2006
13. California Enargy Commission's Dalabass for Energy Efficient Resources (DEER)
14. www.er ergystar.gov
15. DOE 2C.07
16. Applianze Magazine, Seplember 2007

DEEMED SAVINGS TECHMCAL ASSUMPTIONS

Program: ENERGY STAR Retailer Incentive Pilot Program

This is a pifol program designed to incroase the soles of energy efficiont technologies by providing rebates directly to relailers that sell ENERGY STAR appliancas and electronics such as reffigerators, clolhas washers, dishwashers, room air condilioners, televisions and ceiling fans.

Energy Star fiefrigerator elecric enargy and demand savings (kWh and kW)	Enargy savings for the refigerator wore based on the Energy Star Refrigerator Savings Calculator: htip:l/hww.energyslar.gowindex.ctmiczrefig.pr_retigerators. Savngs is 93 kWh pnd $0,011 \mathrm{~kW}$.
Energy Slar clothes washer natural ges savings (Groza Dth) and elaciric energy and demand savings (1.Wh and kW)	Energy savings for the clotherswashor were based on the Energy Star Clotherswasher Savings Calculator. genereted for gas and electric. Savings is 0.88 Cth. 26 kWh and 0.66 kW .
Energy Start dishwasher natural gas savings (Gross Dth) and electric energy and demand savings (kWh and kW)	Energy savings for the dishwasher were based on tho Energy Ster Dlshwashor Sovings Calculator: hltp:IMmw.energystar.gowfindex.clmpcodishwash.pf_dishwashers. This assumed a gas water heater home, so savings are generated for gas and efocric. Sawngs is 1.27 Dth .77 kWh and 0.36 kW .
Energy Star rcoom alr condilitoner eletric energy and demand savings (kWh and kW)	Energy savings for the room air condilioner (AC) were based on the Energy Star Room AC Savings Cabcultotor: hutp:/iwww.energystar,govindex.cfmiczroomac.pr_room_ac. Sevings is 59 kWh and 0.094 kW .
Energy Slar tetevision electric energy and demand savings (kWh and kW)	Enargy savings for the television were based on the Enargy Star Teloulision Savings Gatculator: hitp:/hmw.energystar,gow/index.dmicadishwash.pr_dishwashers. Savings is 57 kWh and $0,022 \mathrm{~kW}$.
Energy Star colling fan enargy and demand savings (xWh and kW)	Energy savings for the cailing fan wert based on the Enargy Star Toleviston Savings Calculator: Ihtp://hww.energystar.gowfindex. cim? $\mathrm{c}=$ refrig. pr_refrigerators. Savings is 180 kWh and 0.12 kW .
Net Din	- Gross Dih \times NTG
Electrical Energy Savings (Gross Generator kWh)	
Electrical Demand Savinge (Gross Generator kVI)	= Customer kw. \times CF//T1-LDLP
Electrical Enelyy Savings (Nat Generator kWh)	E Grass'Generator kWhx ${ }^{\text {NTG}}$.
Electreal Demand Sawings (Not Generator kW)	-Gross Geinerator kW \times NTG!
Vartables:	
NTG	Netho-Gross Factor a We will use 80\% based on refarence 1.
CF	Coinctienca Factor x Probability that paak demand of the bulb will coinctde wilh peak utillty system demand.
TDLF	Transmission Distribution Loss Factor $=7.14 \%$, the percentage loss of electricity as it fows from the power plant to the custorrer, calculated using fectors from Enhanced DSM Fillng SRD-2
OsM savings	Operalion and Mainlenance savings = We will assume no OtM savipgs.

meapure Lify:

13 years (Refarence 2)
11 years (Reference 7)
11 years (Reference 4)
9 years (Relerance 2)
6.2 yoars (Refofence 3)

10 years (Roference 2)

Incremental Cont:
$\$ 30$ (Reference 2)
$\$ 200$ (Reference 2)
50 (Refertence 2) $\$ 30$ (Reference 2) \$0 (Reforence 2)星 (Reterence 2)

Coincidonce Factor.
100\% (fully diversified load) 4.47% (calculated) 2.45% (calculated) 75\% (Reforence 5) 5% (assumed velue) 8\% (Reference 6)

Changes from 2008:
This program is new for 2009

Roferenceat:

1. NYSERDA market Iransformation efforts
2. Energy Star Calculator DOE 2004
3. Consort um for Energy Efificlency
4. Applianse Magazilne, September 2007
5. MN Cacling Coincidence Factor
6. CA CFL Metering Sludy Flnal Report 2005
7. DOE 2007

DEEMED SAVINGS TECHNIGAL ASSUMPTIONS

Program: Evaporative Cooling

Prescriptive rebates will be offered for the purchase and installation of evaporative coolers. Two tiers of rebates are offered based on the Evaperative Elficacy of the unit and the type of media. The rebates and analyses are based on a nominal 3 lon cooling load. Tier 1 units are slandard efficiency evaporative coolers. Tier 2 units are high efficiency evaporative coolers (see assumplions for details). Credit will be calculated based on the number and type of units installed, and the type of the existing unit.

Algorithme:
Refrigerated air to Tier 1 savings:

Energy Savings (Customer kWh)	$=$ Ref air energy - (MotorHP \times Motor kW ConstantTler1Molor eff \times LF evap \times EFLH) $=1840 \mathrm{kWh}$
Demand Savings (Customer KW)	= Ref air demand - (MotorHP \times LF evap \times Motor kW Constant/ieri Motor

Energy Savings (Custorner kWh)	$=$ Ref_air_energy * (MotorHP x Molor_kW_ConstantJier2Motor_eff \times LF_evap_efficient x EFLH) $=2095$ kWh
Demand Seivings (Customer kW)	

Tier 1 to Tier 2 savings:

Energy Savings (Customer kWh)	= (MotoriHP x Motor_kW_Constant/TieriMotor_eff x LF_evap x EFLH) - (MotorHP x Motor_kW ConstantTTier2Motor_efi \times LF evap_efficient \times EFLH $)=362 \mathrm{kWh}$
Demand Savings (Customer kW)	= (MotorHP \times LF_evap \times Motor_kW_Constant/Tler 1 Motor_eff) - (MotorHP \times LF_evap_afficient \times Motor_kW_Constant TTier2Motor eff) $=0.24 \mathrm{~kW}$

Ref_air_energy	= modeled hourly energy use of home with 3 ton 13 SEER standard AC unit in Denver using ESPRE. We will use $1,358 \mathrm{kWh}$. (Reference 1)
Ref_air_derinand	= BtuhtEER $\times 1000$. We will use 3.22 kW (Reference 2)
Tier 1 Molor eff	Standard evaporative cooling motor efficiency. We will use 0.7. (Reference 3)
Tier2Motor eff	High elficacy evaporative cooling motor efficiency. We will use 0.7. (Reference 3)
LF evap	Load factor for standard evaporative cooler of 0.90. (Reference 5)
LF_evap_efficient	Load factor for high efficiency evaporative cooler of 0.69. (Reference 5)

MotorHP	Motor Horsepower - We will use 1.0725 to represent the motor size for an evaporative cooler which corresponds to the cooling oulput of a 3 ton $A C$ unil. (Reference 5)
Motor kW Constant	kW conversion / HP = 0.746
EFLH	Effective full load hours (700 hours) (Reference 5)
CF	= Coincidence Factor, the probability that peak demand of the coolers will coincide with peak utility system demand. 0.90 will be used for prescriptive rebates (Reference 5)
TDLF	Transmission Distribution Loss Factor $=7.14 \%$, the percentage loss of electricity as it frows from the power plant to the customer, calculated using factors from Enhanced DSM Filing SRD-2
NTG	Net-to-Gross Factor a We will use 60% for standard $A C$ to standard eveporative cooling, and 100% for remaining projects based on Xcel Energy program experience.
Incremental Costs	= Incrementalicostrof efficient technology over baseline technology: Costs will be provided by customer if available, if not, assumed costs will be used. AC unit = $\$ 1268($ Reference 8); Std Evap Coolar $=$ \$400(Relerence.6), HE Evap Cooler = \$2200(Reference 8)
O\&M saving	= Operation and Maintenance savings related to water use are listed in Table $\uparrow_{\text {. }}$
Measure Lifo	= 10 years (Reference 4)

Provided by Customer:

Type of unit installed (Tier 1 or Tier 2)
If Tier 2, type of unit previously installed (AC or None)

Verifled during MaV:
 Yes
 Yes

Assumptions:

Base System	New System	O8M Savings
Refrigerated Air	Standard Evap Cooling (Tier 1)	\$ - (19:85)
Refrigerated Air	Hight Efficient Evap Cooling (Tier 2)	\$.. ${ }^{\text {a }}$ (5:06)
Standard Evap Cooling (Tier 1)	Hight Efficlent Evap Cooling (Tier 2)	$\$ \quad 14.79$

Qualifying equipment must be new and be a permanently instalied direct, indirect or two-stage evaporative cooling unit. Portable coolers or systems with vapor compression backup are not eligible, nor is used or reconditioned equipment.
Tier 1: Qualifying evaporative cooling units must have a minimum Industry Standard Rated airflow of 2,500 CFM
Tier 2: Qualifying evaporative cooling units must have a minimum Media Saturation Effectiveness of 85% and above. The units must be installed with a remote thermostat and a periodic purge water controt.

References:

1. ESPRE 2.1 engineering model: Simplified energy analysis methods for residential buildings
2. Building America, Research Benchmark Definitions, Pg 9 , htip:/hww.eere.energy.gov/buildings/building_america/pdfs/37529.pdif
3. Avarage motor efficiency for 0.75 hp motor from NEMA, hitp:/hwww.eere.energy.gov/buildings/appliance_standards/commercial/pdfs/small_motors_tsd.pdf 4. Kinney, Larry. New Evaporative Cooling Systems: An Emerging Solution for Homes in Hot Dry Climates with Modest Cooling Loads. SWEEP
4. Summit Elue/Nexant Study - Motor HP, load factor, EFLH
5. An average of the price for a 13 SEER. Goodman (http:/hww.acfactoryoutlet.com/home.asp?p=listgoodman.asp\&cat=73\%sort=1\&ah=1) and the price as noted in the DOE's AC calculator spreadsheet (www.energystar.gow/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) is assumed.
6. http:/Mww.google.com/products?q=home+depot+evaporative+cooler+costi\&ie=UTF-8\&oe=utf-8\&ils=org.mozilla:en-US:official\&client=firefox-
a\&um $=1 \&$ sn $=X \&$ oi=product_result_group\&resnum $=1 \& c t=t$ tile
7. ittp://uww.foolbase.org/Techunventory/techDetails.aspx?ConteniDetaill $=750$: "A two-stage evaporative cooler with a cooling capacity equivalent to a three-ton conventional system retails for about $\$ 1,800$." The California Energy Commission stotes that installation costs are equivatent to refrigerated air systems, so only equipment cost is included in this analysis (htp:/hwww.consumerenergycenter.org/home/heating_cooling/evaporalive.html: "Installation costs of swamp coolers are comparable to atr conditioning units").
8. O\&M Savings based on manufacturers water use data and an assumed $\$ 3 /$ thousand gallons cost for water

Program: Furnace Efficiency

Prescriptive rebates will be offered for new Condensing Furnaces and replacement of current furnaces.

Algorithms:	
Furnace Savings (Gross Dth)	
Net Dih	= Gross Dith \times NTG
Variables:	
Hrs	$=$ Annual operational hours per year of the furnace $=2864$, based on the BIN data for Denver from ASHRAE. Reference 1 .
EFFb	=Required Efficiency of Baseline furnace (AFUE), as defined in the 2006 IECC. It is 78\%.
EFFh	= Required efficiency for higher efficiency fumace (AFUE). The customer provides the rated nameplate efficiency, either 92% or 94%.
BTUH	= British thermal unit per hour - Rated fumace BTUH nameplate data provided by customer on rebate
1,000,000	=Conversion from ETU to dekatherms $=1,000,000$
Alt	=Allitude correction factor for Denver which is 0.80 . This factor represents the reduced capacity of a furnace at increased allitude. Slandard reduction is approximately 4% per thousand feet, therefore we will use 20% for Colorado furnaces.
Measure Life	= Length of time the furnace equipment will be operational = 15 years (Reference 4)
Baseline Cost	= Cost of the baseline technology. For Retrofit, the cost is $\$ 0$ since the baseline is to continue to operate the existing system. For New Construction, the cost is that of the lower efficiency option. Costs assumed to be $\$ 9.71$ per 1000 BT U/h capacity (reference 2)
High Efficiency Cost	$=$ Installed cost of high efficiency unit assumed to be \$42.48 per 1000BTUH (Reference 2)
NTG	Net-to-gross = 77\% (Reference 3)

Provided by Customer:
New furnace size (BTUH)
New furnace efficiency

Verifled during M\&V:
Yes
Yes

Assumptions:

- Each furnace is replaced with the same size on a 1 for 1 basis.
- Prescriptive rebates are only given for fumaces put into service, rebates are not given for backup furnaces.
- Service ife of typical furnace is 20 years (per FEMP), 15 years used in the calculations. Reference 5
- Furnaces must have a minimum efficiency of 92% AFUE for a rebate, and 94% AFUE or higher efficiency will receive a larger rebate.
- The baseline efficiency for the furnace is based on 2006 IECC, minimum of 78%.
- Efficiency of all furnaces is Annual Fuel Utilization Efficiency ("AFUE")

Changes from 2008:
There was no prescriptive program in 2008
References:

1. Bin Temp \& CO Bin Hrs are taken from ASHRAE, to determine operating hours in Denver area. See table 1, used 2864 hours.
2. The average baseline and high efficiency costs are based on the California DEER database.
3. Net-to-Gross factor from Summit Blue 2006 Midwest Residential market Assessments DSM Potentlal Study
4. Measure life from the Federal Energy Management Program (FEMP).

Program: Heating System Rebatos

Residential natural gas customers receive a cash rebate for purchasing high-eflicfency heating equipment.
Algorithms:

Algorithms:	
Furnace fron AFUE 78\% to 92\% (Ther 1): Natural gas ;avings. (Gross Dth)	Energy savings for the gas furnace were calculated in EnergyGauge using-a.baseline home model calibraled to lyplcal home size and charactoristics forthe Deñver araa (see below for characteristics) $=9.8$. Oth
Furnace fror AFUE 78\% to 94% (Tier 2): Natural gas zavings (Gross Dth)	Energy savings for the gas'rumace were calculated in Energy Gauge using endasaline home.model calbrated to typical home size and characteristles for the Denver area (see below for characterlstics) $=11$ Dth
84\% boiler natural gas savings (Gross Dth)	Energy savings for the gas boiler were calculated in EnergyGauge using a baseline home model calibrated to typical home size and characteristies for the Denver area (see below for characioristics) $=3.0 \mathrm{Dth}$
Nel Dih	$=$ Gross Dh x NTG
Variables:	
NTG	Net-to-Gross Factor $=$ We will use 77\% (Reference 6)
Measure 部e	$=18$ years (Reterence 5)
Incremental cost:	
High-elficiency fumace rated at an AFUE of High-efficiency furnace raled at an AFUE of High-etficiency boiler raled at an AFUE of ad	is $\$ 450$. (Reference 1) is $\$ 505$. (Reference 1) $\$ 440$. (Reference 1)

Provided by Customer:	Verified during MgV:
Efficiency of new unit (Fumace $92 \%, 94 \%$ - Boiler 84%)	Yes

Changes From 2008:
This is a now program for 2009

DEEMED SAVINGS TECHNICAL ASSUMPTIONS

Program: Home Lighting \& Recycling

Horne Lighting Program encourages the purchase of compact fluorescent lamps (CFLs) and recycling of all fluorescent lamps.
Algorithms:

Electrical E:nergy Savings (Customer kWh)	=Number of Bulbs \times (kW Savings per Bulb) \times Hours
Electrical Demand Savings (Customer kW)	=Number of Bultos \times (kW , Savings per Bulb)
Electrical Energy Savings (Gross Genarator kWh)	$=$ Customer kWh / (1-TDLF)
Electrical [)emand Savings (Gross Generator kW)	= Custorner $\mathrm{kW} \times \mathrm{CF} /(1-\mathrm{TDLF})$
Electrical Energy Savings (Nel Generator kWh)	= Gross Generator $\mathrm{KWh} \times$ NTG
Electrical Demand Savings (Net Generator kW)	\equiv Gross Generator KW x NTG

Number_of Bulbs	= Number of bulbs sold
KW_Savings_per_Bulb	= kW savings per replaced bulb. We will subtract the manufacturer provided wattage for each CFL. from the wattage of the incadescent bulb it replaces. The incadescent wattages will be determined based on the CFL wattage as seen in Table 1.
Hours	= Hours of operation per year for the bulb. Hours of operation will be determined by assuming thet there are three existing CFLs in each home. A sample of customers will be used to determine the distribution of bulbs purchased per customer. This distribution of bulbs/purchase will be used to determine the average hours of newly installed bulbs per Table 3.
CF	$=$ Probability that peak demand of the bulb will coincide with peak utility system demand. 0.08 will be used for all CFLs based on Reference 1.
Measure Life	$=$ Measure life for the average CFL sold will be 7 years; ($8000 \mathrm{hr} \mathrm{life/1.119} \mathrm{hr/yr)}$.
TDLF	Transmission Distribution Loss Factor $=\mathbf{7 . 1 4 \%}$, the percentage loss of electricity as it flows from the power plant to the customer, calculated using factors from Enhanced DSM Filing SRD-2

Incremental Cost of Bulbs	= From Table 4 (Rei 3)
Net-to-Gross Factor	$=$ We will use 83% for residential home lighting. Per Settement NTG $=83 \%=93 \%-10 \%$ Installation Rate assumption.
O8M savinjs	= Operation'eind Maintenance savings are assumed to be zero.

Provided by Program Vendor: Verified during M\&V:
Number and lype of bulbs purchased

Assumptions:

Average house in CO already has a CFLs installed
Table 1 - Existing lighting wattage and coincidence factors for fesldential lights (Referenco 1,5)

CFL Watinge Range	Replaced Incandescent Bulh Wattage
$9-12$	40
$13-16$	60
$17-23$	75
$24-30$	100
$31-52$	150

Table 2 - Hours of oporation by space (Reference 2)

	Number of Lamps per Space	Annual Operating Hours per Space	Total Installed Lamps
Kitchen	- 5.11	1210	5.11
Outdoor	4.06	1027	9.17
Utility Roorn	1.81	888	10.98
Living Room	5.97	864	16.95
Dining Room	1.23	829	18.18
Family Room	2.38	772	20.56
Garage	4.23	720	24.79
Office	1.16	708	25.95
Bathroom	6.88	669	32.83
Hall	5.12	616	37.95
closet	0.77	513	38.72
Other	2.05	435	40.77
Bedroom	9.94	406	50.71

Purchased tamps are installed in most frequently used locstions in decining order; e.g. Girst 5 in Kitchen, next 4 in Outdoor locations etc.

Table 3 - Average hours for newly installed bulbs

Total Number of Bulbs in the House	Newly Purchased Bulbs	Per Bulb Hours	Total Hours for Newly Installed Bulbs	Average Hours of Newly
1	-	1210	NA	NA
2	-	1210	NA	NA
3	-	1210	NA	NA
4	1	1210	1210	1210
5	2	1210	2420	1210
6	3	1027	3447	1149
7	4	1027	4474	1119
8	5	1027	5501	1100
9	6	1027	6528	1086
10	7	888	7416	1059
11	8	888	8304	1038
12	9	864	9168	1019
13	10	864	10032	1003
14	11	864	10898	991
15	12	864	11760	980

fable 4 - 2 verage Cosftable

Gross Retail	$\$ 3.23$	per bulb
Baseline	$\$ 0.50$	
Incremental	$\$ 2.73$	
Rebate	$\$ 1.30$	
	$\$ 1.43$	

Changes from 2008:
Home lighting is adding a bulb recycling service for 2009.
References:

1. CFL METERING STUDY FINAL REPORT, Prepared for: Pacific Gas \& Electric Company, San Diego Gas \& Electric Company, Southern California

Edison Company, 2005 - Composite wattages and coincidence factor
2. US DOE, US Lighting Market Characterization, Navigant Consulting, 2002. Annual operating hours
3. Cost Data Source: 2006 MEEA Change A Light Change the World Program for 15 W and 26 W lamps. These costs are an upper boundary as lamp prices are significsintly lower for more common 13 W lamps (vast majority of residential lamps), and all lamp prices decrease.
4. Deemed Savings Database, Minnesola Office of Energy Security, 2008. CF, Hours, KW, Costs

DEEMED SAVINGS TECHNHCAL ASSUMPTIONS

Program: Home Performance with ENERGY STAR Rebates

Reskdentlal zatural gas and electric customers receive a cash rebate for implementing multiple energy efficiency improvements.

REQUIRED: Attic insutation and bypass sealing natural gas savings (Gross Dth) and electric energy and demand sevings (kWh and kW)	Energy savings for the attic insulation and bypass sealing were calculated in EnengyGauge using a baseline home model calitrated to typical home size and characteristics for the Denver area (see below lor characteristics.) Savings is 5.9 Dth. 180 kWh ant 0.13 kW .
REQUIRED: Air sealing and weather-stripping natural gas :3avings (Gross Dth) and electric energy and demancl savings (kWh and kW)	Energy savings for the air sealing and weather stripping were calculated in Enorgy Gauge using a baseline home modal calibrated to typlcal home size and characteristics for the Denver area (see below for characteristics.) Alr infidration is measured as Air Changes per Hour (ACH); savings come from reducing the air infiltration through leaks. weatherstripping, holes elc. Savings is $7.4 \mathrm{Dih}, 64 \mathrm{kWh}$ and 0.03 kW .
REQUIRED. 20 CFLs electric ener demand savings (kWh and kW)	Energy and demand savings and annual hours of operation for compact fluorescent lamps are based on data and calculations derived from the 2002 US Lighting Market Characterization performed for the Department of Energy in . 2002. Savings is 833 kWh and 0.925 kW .
Wall insulation natural gas savings (Gross DIh) and electric energy and demand savings (kWh and kW)	Energy savings for the wall insulalion were calculated in EnergyGauge using a baseline home model calibrated to typical home size and characteristics for the Denver area (see below for charactoristics.) Savings is $32.3 \mathrm{Dth} / \mathrm{yr}, 630$ kWh and 0.31 kW .
Setback thermostat nalural gas savings (Gross Dth) and electric energy and demand savings (kWh and kW)	Energy savings for the themostat selback were calculated in EnergyGauge modeling using a baseline model home calibrated to typical home size and characteristlcs for the Denver area (see below for characteristics.) Savings is 3.6 Dth, 175 kWh and 0.07 kW .
New HE Furnace AFUE 92\% natural gas savings (Gross Dih)	Energy savings for the gas furnace were calculated in EnergyGauge using a baseline home model calibrated to typical home slze and characteristics for the Denver area (see below for characteristics) $=7.8$ Dth
New HE Fumace AFUE 94\% natural gas savings (Gross Dth)	Energy savings for the gas fumace were calculated in EnergyGauge using a baseline home model calibrated to typical home size and characteristics for the Denver area (see below for characteristies) $=88$ Dth
Tankless water heater 82\% nalural gas savings (Gross Dth)	Energy savings for the gas water heater were calculated in EnergyGauge using a baseline home model calibrated to typical home size and characteristics for the Denver area (see below for characteristics) $=5.9$ Dth
Power vented water heater natural gas savings (Gross Dth)	Energy savings for the gas water heater were calculated in EnergyGauge using a baseline home model calibrated to typical home size and characteristics for the Denver area (see below for characteristics) $=\mathbf{2 . 1}$ Dth
Dishwasher natura: gas savings (Gross Dth) and electric energy and domand savings ($k W h$ and $k W$)	Energy savings for the dishwasher were based on the Energy Star Dishwasher Savings Calculator: hitp://hww.energystar, gov/index.cim7c=dishwash.pr_dishwasters. This assumed a gas waler heater home, so savings are generated for gas and electric. Savings is 1.27 Dth, 77 kWh and 0.36 kW .

Clothes washer natural gas savings (Gross Dth) and electric energy and domand sawings (kWh and kW)	Energy savings for the clotherswasher were based on the Energy Star Chotherswasher Savings Calculator. hitp://www,energystar.gowindex.cimic=clotheswash.pr_clothes_washers. This assumed a gas water heater home, so savings are generated for gas and electric. Savings is $0.88 \mathrm{Dth}, 26 \mathrm{Kwh}$ and 0.66 kW .
Refrigerator replacement electric energy and demand savings ($\mathbf{k W h}$ and kW)	Energy savings for the refrigerator were based on the Energy Star Refrigerator Savings Calculator: http:/www.energystar,govfindex.cfin? $\mathrm{c}=$ reltig. pr_relrigerators. Savings is 93.41 kWh and 0.011 kW .
Relrigerator recycling electric energy and demand savings (kWh and kW)	Energy savings for the refigerator are based on shipmenl-weighted average efificiences of unils manulactured frofn 1893-2000 with appropriate degredation factors applied to calculate baseline energy consumplion (http://enduse.Jbl.gov/Projects/RED.hlml) Demand savings are based on using an Average kW/Peak kW ratio from Oeemed Relrigerator Savings for Texas developed by Fronter Associales. Reference 8. Savings is 988.9 kWh and 0.13 kW .
Net Dih	\pm Gross. Dth \times NTG
Electrical Energy Serings (Gross Generator KWh)	- Customer kWh / (fitDife)
Electrical Demand Savings (Gross Generator kW)	
Electrical Energy Savings (Nel Generator kWh)	- Gross Generator kWh x NTTG
Electrical Demend Savings (Nel Generator kW)	E Gross Genarator KW \times NTG
Vartables:	
NTG	Net-to-Gross Factor = We will use 94\% based on reference 5.
CF	Coincldence Factor = Probability that peak demand of the bulb will coincide with peak utility system demand. As seen in Table 1 basad on Relerence 1.
O8M savings	Operation and Malntenanca savings = We will asssume no O8M savings.
TDLF	Transmission Distribution Loss Factor $=7.14 \%$, the percentage loss of electricity as it flows from the power plant to the customer, calculated using factors from Enhanced DSM Filing SRD-2

Type of measure:	Theasure lifo:	Incremental cost:	Coincidence Factor
Attic insulation and bypass sealing	20 years (Relerence 1)	\$598 (Refarence 6)	NA
Air sealing und weather-stripping	10 years (Relerence 1)	\$272 (Reference 7)	NA
CFLS	8.8 years (Reference 9)	\$63 (Reference 10)	8\%
Wall insulation	20 years (Reference 1)	\$2,150 (Reference 6)	NA
Setback thermoslat	5 years (Relerence 11)	F50(Reference 11)	NA
HE furnace AFUE 92\%	18 years (Reference 12)	\$390 (Reference 13)	NA
HE furnace AFUE 94\%	19 years (Reference 12)	\$440 (Reference 13)	NA
Tankless witer heater 82\%	20 years (Reference 1)	\$750 (Reference 13)	NA
Power ventud waler heater	15 years (Rererence 1)	\$175 (Reference 13)	NA
Dishwasher	11 years (Relerence 15)	\$30 (Referencice 14)	2\%
Clothes washer	1.1 years (Reference 16)	\$200 (Reference 14)	2\%
Refingerator replacement	13 years (Reference 14)	\$30 (Reference 14)	100\%
Refrigerator recycling	7.3 years (Reference 14)	40 (Reference 11)	100\%

Provided by Customer:
Type of Me:3sures Implemented

Verified during M\&V:
Yes

Assumptions:

The baseline home had an existing level of insulation in the attic of $R-19$ and the change case had an elevated insulation level of R-40.
The baseline home had an existing ACH natural of 0.60 and the change case had a 25% reduclion to 0.45 ACH natural.
The basellne home had an existing level of insulation in the walls of R-0 and the change case had an elevaled insulation level of R-11.
The baseline water heater is a $\mathbf{4 0}$ gallon capacily with an Efficiency Factor (EF) of $\mathbf{5 9 \%}$.
Changes From 2008:
This is a new program for 2009

Bullding Characterlstice for Prototype Home Used for Modeling:

Singie Famaly
Two story (Reference 3)
3 bedroorn 2 bathroom (Reference 3)
2000 square feet (Reierence 3)
Basement foundation (Reference 3)
HVAC:
heating - gas furnace 78 AFUE (55.9 kBtu unit required) - 85% of homes have gas heating, and 78% of which are forced alr furmaces (Reference 2) cooling - 59\% have Central Air Conditioning model required a 2.5 ton unil to meet the cooling load (Referenca 2)
air hanclier is in the basement and supply ducts and retum ducis are assumed to be in majority interior space
Windows:
61\% of homes have double pane windows (Reference 2)
double pane low-E are standard (Reference 4)
Model assumes 15% of wall area glazing
applied a u-factor of 0.53 (average between clear glass double pane and low-E)
insulation L.ovels:
Existing Ceiling Insulation: R-19 (Reference 4)
Existing Wall Insulation: R-11 (Relerence 4)
Basement Assumptions
Assumed basement walls to have R-11 insulation
Basement is considered finished space bul not conditioned
The air handler is located in the basement
Some hones will have smaller sections of the basement conditioned - maybe a bonus room elc, however this cannot be easily modeled in EnergyGauge

Appljances (Reference 2)
85% have dishwashers
74% electic ranges
88% and 69% have clothes washer and dryer (electric)
85% water heating is gas - model used a 40 gallon storage tank
68% of homes have ceiling fans
Average Customar Energy Consumption: (Reference 2)
KWh annually: 9,000 roughly for a 2,000 square foot home
Therms annually: 835

References:

1. Californla Measurement Advisory Committee (CALMAC) Protocols, Appendix F (www.calmac.org/eventstAPX_F.pd).
2. 2006 Rusidential Energy Use Colorado Service Area - Xcel: Bnuce Neilson
3. American Housing Survey for Denver - US Census Bureau
4. Xcel Entergy CO DSM Potential 2003 - prepared by Kema
5. National Energy Efficiency Best Practices Study - Residential Single-Famaly Comprehensive Weatherization Best Practlces Report from December 2004.
6. RS Means Repair and Remodeling 2007 at a cost of $\$ 0.028$ per square foot per increase in R-value.
7. National Energy Audit Tool (NEAT) and Frontier estimates.
8. EEBP web site - Tacoma Residential Weatherization program
9. US Lighting Market Characlerization Study performed for the Department of Energy in 2002
10. MEEANES Change A Light compaign info
11. Xcel Energy estimate
12. Draft Technical Support Document: Energy Conservation Standards for Residential Furnaces and Boilers, Efficiency Standards for Consumer Products Prepared ior US DOE, September 2006
13. California Energy Commission's Database for Energy Efficient Resources (DEER)
14. www.energystar.gov
15. DOE 2007
16. Appliance Magazine. September 2007

deemed savings technical assumptions

Program: Insulation Rebates

Residential natural gas customers receive a cash rebate for installing insulation in their existing single-tamily home or one-lo-four unit property.

Algorithme:	Energy savings for the attc insulation and bypass sealing were calculated in EnergyGauge using a baseline home model calibrated to typical home size and characteristics for the Derver area (see below for characteristics.) Savings is 5.9 Dth/yr.			
Altic insulation and bypass sealing natural gas savings (Gioss Dth)				
Air sealing and weather-stripping natural gas savings (Gloss Dth)	Energy savings for the air se callbrated to lypical home stz measured as Air Changes pe holes etc. Savings is 7.4 Dth	weather stripping were calculated in EnergyGeuge us aracteristics for the Denver area (see below for charac ACH); savings come from reducing the air infiltration th		
Wall insulation natural gas savings (Gross Dth)	Energy savings for the wall in home size and charectetistics	were calculated in EnergyGauge using a baseline hom Denver aree (see below for characterlstics.) Savings		
Net Dith	=GrosstDith \times NTG:.	.1.0.0.		
Variables: _.._______				
O8M savings	$=$ Operation and Maintenance savings are assumed to be zero for the insulation rebates.			
Type of insulation:	Measure life:	Incremental cost:		
Attic insulation and bypass sealing	20 years (Relerence 3)	\$588.00, (Reterence 6)		
Air sealing and wealher-stripping	10 years (Reference 1)	\$272.00 (Reference 7)		
Wall insulation	20 years (Reference 1)	\$2,080.00 (Reference 6)		
Provided by Customer: Attic insulation depth, type of insulation and size of attic Blower doo: test report and visual inspection of areas sealed, cauliked, etc. Validation ef wall insulation, materials used and square footage or wails		Vertifed during mav:		
		Yes		
		Yes		
Assumptions:				
The baseline home had an exisling ACH natural of 0.60 and the change case had a 25% reduction to 0.45 ACH natural.				
The baseline home had en existing level of insulation in the walls of R-0 and the change case had an elevated insulalion level of R-11.				
Changes From 2008:				
This is a new program for 2009				

Bullding Charactertatic5. for Prototype Homo Used for Modeling:
Singie Family
Two story (Reference 3)
3 bedroom 2 bathroom (Relerence 3)
2000 squave feet (Roference 3)
Basemenl foundation (Reference 3)
HVAC:
heating - gas fumace 78 AFUE (55.9 kBtu unit required) - 8.5% of homes have gas heating, and 78% of which are forced air furnaces (Reference 2) cooling - 59% have Central Air Conditioning model required a 2.5 ton unit to meet the cooling load (Reference 2)
air hancler is in the basement and supply ducts and relum ducts are assumed to be in majority interior space
Windows:
61\% of homes have double pane windows (Reference 2)
double pane low-E are standard (Refe:ence 4)
Model essurnes 15% of wall area glazing
applied a u-factor of 0.53 (average between clear glass double pane and low-E)
insulation l.evels:
Existing Ceillng Insulation: R-19 (Relerence 4)
Existing Wall Insulation: R-11 (Relerence 4)
Basement Assumptions
Assumed basement walls to have \mathbf{R}-11 insulation
Basement is considered finished space but not conditioned
The atr hander is located in the basement
Some hornes will have smaller sections of the basement condilioned - maybe a bonus room etc, however this cannol be easily modeled in EnergyGauge
Appliances (Reference 2)
$\mathbf{8 5 \%}$ have dishwashers
74\% electric ranges
88\% and 139% have clothes washer and dryer (elactric)
85\% water heating is gas - model used e 40 gallon storage tank
68\% of hemes have ceiling lans
Avorage Customer Energy Consumption: (Reierence 2)
KWh annually: 9,000 roughly for a 2,000 square foot home
Therms annually: 835

References:

1. Catifornia Measurement Advisory Comrnittee (CALMAC) Protocols, Appendix F (www,calmac.org/events/APX_F-poli).
2. 2006 Residential Energy Use Colorado Service Area - Xcel: Bruce Nellson
3. American Housing Survey for Denver - US Census Bureau
4. Xcel Eriergy CO DSM Potenilal 2006 - prepared by Kema
5. National Energy Efficiency Best Practices Study - Resldential Single-Family Comprehensive Weatherization Best Practices Report from December 2004.
6. RS Means Repair and Remodeling 2007 al a cost of $\$ 0.028$ per square foot per increase in R-value.
7. National Energy Audit Tool (NEAT) and Frontier estimates.

Program: Lighting Efficiency

Prescriptive rebates will be offered for replacement lighting equipment. Naw Construction rebates will be offered for new facillies or spaces overhauled for a new purpose.
Cusiom rebates are available for lighting-related improvements that are not prescriptive.

Algorithmis: Electrical Jemand Savings (Customer kW)	E(KW _ Base- kW _EE) \times HVAC_coofing_kWsavings_factor
Electrical Energy Savings (Customer kWh/yr)	F (kW - Base - kW EE) \times Hrs \times HVAC_cooling_kWhsavings factor
Natural Gas Savings (Dith)	$=$ (kW Base - KW _EE) \times Hrs \times HVAC, heating_penalty factor
Lighting Controls -Electrical Energy Savings (Customer kWh/yr)	n(kW connected) \times (1-PAF) \times Hrs \times HVAC_cooiling_kWhsavings_factor
Lighting Controls -Electrical Demand Savings (Customer (kW)	$=(\mathrm{kW}$ connected) \times (1-PAF) \times HVAC cooling kWsavings factor
Lighting Controls -Natural Gas Savings (Dih)	$=(\mathrm{kW}$ connected) \times ((1-PAF) \times Hrs \times HVAC heating penality factor
Electrical Energy Savings (Gross Generator kWh)	= Customer $\mathrm{kWh} /$ (1 -TDLF)
Electrical Demand Savings (Sross Senerator kW)	= Cuslomer KW \times CF / (1-TDLF)
Electrical Energy Savings (Nel Generalor kWh)	$=$ Gross Generator kWh \times NTG
Electrical Demand Savings (Net Generator kW)	= Gross Generator kW \times NTG

Hrs	$=$ Annual Operating Hours. Hours to be oblained from Table 2. The type of facility is to be supplled by the cuslomer.
kW_Base	= Baseline fixture wattage (kW per fixture) determined from stiputated fixture wattages from Standard Fixture information. Fixture type provided by customer. Table 3 is an example of a Standard Fixture informalion table.
kW_EE	$=$ High Efficlency fixture wattage (kW per fixture) delermined from stipulated fixture watlages from Standard Fixture information. Fixture type provided by customer. Table 3 is an example of a Standard Fixture information table.
HVAC_cooling_kWhsavings_factor	= Cooling system energy savings factor resulting from effrient lighting from Table 1. Reduction in lighting energy results in a reduction in cooling energy, if the customer has air conditioning. Existence

HVAC_cooling_kWsavings_factor	= Cooling system demand sevings factor resulting from efficient lighting from Table 1. Reduction in lighting demand results in a reduction in cooling demand, it the customer has air conditioning. Existence of air conditioning to be provided by customer.
HVAC_heating_kWsavings_factor	$=$ Heating system penalty factor resulting from efficient lighting. Reduction in lighting demand results in an increase in heating usage, if the customer has air conditioning. A value of -0.00088738 Dth/kWh given by (Reference 4).
CF	= Coincidence Factor, the probability that peak demand of the lights will coincide with peak utility system demand. CF will be determined based on customer provided building type in table 2.
Measure Lifo	= Length of time the lighting equipment will be operational, see Table 6 for Measure Lifetimes
Baseline Cost	the existing system. For New Construction, the cost is that of the lower efficiency option. Costs given by (Reference 5) and vendors.
Hłgh Efficienicy Cost	= Cost of the High Efficiency technology. Costs given in Deemed Fixture Table (Reference 4)
kW connectud	Total connected fixture load, determined as the sum of stipulated fixture wattages from Deemed Fixture Table.
PAF	Stipulated power adjustment factor based on control type from Table 4.
TDLF	Transmission Distribution Loss Factor $=6.39 \%$, the percentage loss of electricily as it flows from the power plant to the customer, calculated using factors from Enhanced DSM Filing SRD-2
NTG	Net-to-jross $=96 \%$ (Reference 5)
Incremental operation and maintenance cost	$=$ Other annual savings or costs associated with the electrical savings. For Lighling, this consists of additional natural gas for heating. Mathodology given by (Roference 4).

Provided by Customer:	Verified during M8V:
Number of Fixtures	Yes
Lighting equipment type	Yes
Building typ:	Yes
Existence of air conditioning	Yes

Assumptions:

- Each replacement lighting fixture is going in on a one-for-one basis for existing fixtures. New construction fixtures are put in on a one-for-one basis instead of lower efficiency options.
- In the Technical Assumptions, one will note that the Operating Hours does not appear, but rather a modifled version. The methodology defines kW Savings on the basis of difference in kW with the HVAC Cooling demand factor. The Annual Energy Savings takes into account any heating that has to be added.

Table 1: HVAC Interactive Factors (Roference 2)

HVAC systom	HVAC_cooling_kWhsavi ngs factor	HVAC_cooling_kW savings factor
Healing only	1.00	1.00
Heating and cooling	1.11	1.33

Table 2: Coincident Peak Demand Factors and Annual Operating Hours by Building Typo (Referonce 1 and 3)

Building Type	CF	Annual Operating Hours
Office	78\%	3435
Restaurant	94\%	4156
Retail	94\%	3068
Grocery/Supermarket	94\%	4612
Warehouse	96\%	2388
Elemen./Second. School	73\%	2080
College	71\%	5010
Health	84\%	3392
Hospital	84\%	4532
Hotel/Malei	51\%	2697
Manufacturing	96\%	5913
Other/Misc.	96\%	2278
24-Hour Facility	94\%	8234
Satety or Code Required	96\%	8760

Table 3: Example of 78 Lighting-Roforence 6 - Full table in Deemed Fixture Table tab

Technology	KW
1 Lamp T12	
	0.039
1 Lamp T8	0.031

Table 4: Stipulated Power Adjustment Factors (Reforence 1 and 7) - Full table In Deemed Fixture Table tab

Control Type	PAF	
no controls.		1.00
Occupancy Sensor - Wall Mount		0.70
Occupancy Sensor - Ceiling Mount		0.70

Daylighting-Continuous Dimming	0.57
Dayighting-Mutiple Step Dimming	0.65
Dayighting-On/Off	0.73

Connected Fixtures	kW connoctod
12 -lamp T 32W EL Ballast Fixture	0.058
2 2-lamp T8 32W EL Ballast Fixtures	0.116
3 2-lamp Ti 32W EL Ballast Fixtures	0.174
4 2-lamp Til 32W EL Ballast Fixtures	0.232
14-lamp T832W EL Ballast Fixture	0.112
2 4-lamp T8 32W EL Ballast Fixtures	0.224
3 4-lamp TE 32W EL Ballast Fixtures	0.336
4 4-lamp T8 32W EL Baliast Fixtures	0.448

Table 6: Mpasure Lifetimos In Yoars (Referonco 4) Measuro

CFL less than 19 W	
Low Wattage T8 Lamps	8
Integrated 2isw Ceramic Metal Halide	7
T8 Lighting Systems	18
T5 Lighting Systems	18
Lighting Costrols	18

Changes from 2008

Baseline efficiencies updated. High efficiency values updated. More measures added to program. Cost information updated frorn various sources. Methodology now looks at market segment rather than a single operating hours value for all participants.

References

1. Afkansas Deemed Savings Quick Start Program Draft Report Commercial Measures Final Report, Nexant. CF and hours
2. HVAC Interactive Factors developed based on the Rundquist Simplified HVAC Intaraction Factor method for Minnesota, presented on page 28 of the $11 / 93$ issue of the ASHRAE Journal - "Calculating lighting and HVAC interactions".
3. Technical Reference User Manual No. 2004-31, Efficiency Vermont, 12/31/04. CF and Hours
4. Deemed Savings Database, Minnesota Office of Energy Security, 2008. CF, Hours, KW, Costs, Measure life
5. Net-to-Gross factor from National Energy Efficiency Best Practices Study(http:/hwww.eebestpractices.com)
6. Lighting E:fficiency input wattage guide, Xcel Energy, July, 2008, kW
7. CL\&P and Ul progrem Savings Documentation modified for 3022 Daylight Hours in Denver CO

Hotroti Pamer	nw	presociliman		Fulcou	hawimincor
	0.025		0.043	STM1.45	
	0.04		0072	\$4.4.4.	
	0.02		0.100	\$50.45	
	0.008		0.144	550.45	
	0037		0072	53278	
	0.095		0.100	4, 37.49	
	0.073		0.1424	5537.48	
	0.003		0.14	\$4.3)	
	0.00		0075	\$47,40	
(1) F F3,			0.121	Es0.11	
			0.123	5	
	0.141		0240	Stas	
	0.005		0.072	+32.78:	
	0	(1) F2at 1345.3 W/	0.100	437.4.	
			0.14		
(2) F3218 $485^{3 / 32 \mathrm{LL}}$	0.000		0076	57742.	
	0.02		0.04	50.50	
			0.072	84.00	
			0.100	88	
	6.180	(1) Fiotic if Mwl	0.14	8	
	0.00		0078	803,43	320000
			0,150	97.00	
				\$27,00	377.00
(1] FSTTTSHO 4.3.F	0.063		0.100		
			0.149	5	
	0.69				
	0.117				
	0.11			527.17	
	0×3	malmbat	0.450	\$220331	\$1000
	a,350		0.450	5203.31	1110.00
	0.408		0.850	[57231	
	0.56		1.000	9407. 31	8110000
	0.003		O. 10	\$140.00	H2, ${ }^{2}$
	0.003		0218	\$140.00	222.30
	0.150		0205	\$133900	
	0.18		045	\%eene	Easmom
	0.221		0.436	${ }^{57605}$	517000
	0.388	(1)	0.050	8377.50	8177.30
	044	Hethtatill			
	0.0		1.050	8554.00	givi.
	0.73				
	0.276		0450	800.00	
	0.65	Henitubto, (1) 760w	0. E 50	3242.00	5220.00
	0.702		1.000	sau, 00	88.00
	0.011		0.016	50.72	5
	0.012		0.005		40.31
	0.01		O.000	[6.78	
			$0 \mathrm{0at}$	sincter	4, 4

Program: Motor Efficiency

Prescriptive ebates will be offered for new motors (Plan A) up to 500 hp and replacement of currently operating moters (Pian B) up to 500 hp, and installation of new variable frequency drives (VFD) up to 200 hp .

Algorithms:	
Motor Electrical Esergy Sevings (Customer kWh)	F HP \times LF Motors \times Conversion \times (1/Standard_Eff - 1/ High_ Eff) \times Hrs
Mator Electrical Demand Savings (Customer kW)	$=\mathrm{HP} \times$ LF Mótors \times Conversion \times ($1 /$ Slandard Eff $-1 /$ High Eff $)$
VFD Drive Electrical Energy Savings (Customer kWh)	$=H P \times$ LF Drives \times Conversion \times (1/Standard Eff) \times Hrs \times \% Savings_Drives
VFD Drive Electrical Demand Savings (Customer kW)	$=\mathrm{MP} \times \mathrm{L} \mathrm{F}$ Drivés \times Conversion \times (1/Standard. Efi) \times \% Savings_Drives
Electrical Energy Savings (Gross Generator kWh)	= Customer kWh / (1-TDLF)
Electrical Demand Savings (Gross Generator kW)	= Customer $\mathrm{kW} \times$ CF/ ($1-\mathrm{TDLF}$)
Electrical Energy Savings (Net Generator kWh)	I Gross Generator KWh x NTG
Electrical Demand Savings (Net Generator kW)	= Gross Generator kW \times NTG

Hrs	= Annual operational hours per year of the motor. Deemed values are used for hours based on the type and use of the molor. The customer provides the following information on the rebate form (HP, Industrial/non industrial, building lype, and pump/fan/other)
LF_Motors	$=$ Motor load factor as percentage (0 - 100). The assumed value of 75% will be used for prescriptive motors. See Reference 3
LF_-Drives	$=$ Drive load tactor as percentage ($0-100$). The assumed value of 75% will be used for prescriptive pumping drives and 65% will be used for prescriptive fan drives. (Reference 5)
HP	= Rated motor horsepower provided by customer on rebate form.
High_Eff	$=$ Efficiency of high efficiency replacement motor as percentage ($0-100$). The customer will provide lhe model and serial number of the motor along with actual nameplate efficiency from the new motor. If the actual efficiency is not provided by the custom
Standard_Eff (Plan A motors and drives)	= Efficiency of standard replacement motor as percentage (0-100) we will use 'EPAct Efficiency' as specified in Table 1 based on customer provided molor size, speed, and type.
Standard_Elf (Plan é motors)	= Effitiency of existing motor (0 - 100). We will use efficiency of 'Existing Efficiency Motors', from Table 1.
\%_Savings_Drives	= Average savings achieved by instaling a varlable frequency drive on a fan or pumping motor. 33\% will be used for prescriptive drive rebates. (Reference 5)
Conversion	= Standard conversion from horsepower to kW. $1 \mathrm{HP}=.748 \mathrm{~kW}$

Coincidence Factor	$=$ Probabillty that peak demand of the motor will coincide with peak utility system demand. 0.76 will be used for prescriptive rebates, see Reference 2.
Measure Life	= Length of time the motardrive will be operational $=20$ years, (Reference 3)
Basoline and ineremental cost assumptions	$=$ The customer will provide the model and serial number of the motor from that the size, type and rpm of the motor/drive will determine the deamed baseline cost or incremental cost from Table 1. (Reference 1, 3 and 6)
TDLF	A transmission distribution loss factor of 6.39% will be used. This is calculated using factors from Enhanced DSM Filing - SRD-2
NTG	Nel-to-Gross factors - We will use 87\% as the NTG for all motors programs (Reference 7)
Incremental operation and maintenance costs or savings	z 0 value assumed for this program

Provided by Customer:
For Motore:
New motor model and serial number (HP, efficiency, lype, and speed can then be looked up in a
database)
Application of motor (Industrialinon Industrial)
Building type where motor is installed for non industrial motors
Use of motior (pump, fan, other) for non Industrial motors
Equipment is installed
For Variable Frequency Drives (VFD):
Size, speed, type and use of motor drive is connected to
Application of motor (Industrial/non Industrial)
Building type where motor is installed for non industrial molors
Use of molor (pump, fan, other) for non Industrial motors
Equipment is installed

Assumptions:
Each motor is replaced wilh the same size on a 1 for 1 basis. Motors replaced with different sizes can participate in the Custom Effclency program.

- Prescriplive rebates are only given for molors put into service, rebates are not given for backup motors.
- Prescriptive rebates are only given to variable frequency drives installed on pump or fan applications.
- Rebates do nol apply to rewound or repaired motors.

Table 1. Excorpt from Deemed Plan A Tables: Motor Efficiency and Incremental Cost of Promium Efficiency Motor (Reference 1,2,3) Full table in "Deemed Plan A Tables" tah

Molor Tag	Standard or Premium Efficiency	HP	Speed (rpm)	Type (Open Drip Proof or Totally Enclosed Fan Cooled)	Efficiency	$\begin{aligned} & \text { Incremental } \\ & \text { Cost } \\ & \hline \end{aligned}$
Premium Etficiency Mator 1 HP 1200 RPM ODP	Premium Efficiency Motor	1	1200	ODP	82.5\%	\$52
Existing Effiviency Molor 2 HP 1800 RPM ODP	Existing Efficiency Motor	2	1800	ODP	78.5\%	- 1030
Premium Efficlency Motor 25 HP 3600 RPM ODP	Premilum Efficlency Molor	25	3600	ODP	91.7\%	5 1,030
Existing Effiodency Motor 5 HP 1800 RPM TEFC	Existing Efficiency Motor	5	1800	TEFC	83.2\%	-

Table 2. Excerpt from Deemed Plan B Tables: Motor Efficiency and Incremental Cost of Premium Efficiency Motor (Reference 1,2,3) Full table in "Doemed Plan B Tables" tab

Motor Tag	Standard or Premium Efficiency	HP	Speed (rpm)	Type (Open Drip Proof or Totally Enclosed Fan Cooled)	Efficiency		remental Cost
Extsting Efficiency Motor 1 HP 1200 RPM ODP	Existing Efficiency Motor	1	1200	ODP	76.3\%		
Premium Efficiency Motor 3 HP 1200 RPM ODP	Premium Efficiency Motor	3	1200	ODP	88.5\%	5	434.20
Existing Efficiency Mator 15 HP 1800 RPM TEFC	Existing Efficiency Motor	15	1800	TEFC	87.2\%		
Premium Efficiency Motor 75 HP 3600 RPM TEFC	Premium Efficiency Motor	75	3600	TEFC	93.6\%	5	4,305.60

Table 3: Excerpt of Operating Hours by Aotor Size, Industrial Applications (Reforence 4) Full table in "Deemed Plan A Tables" tab

HP	All SIC (Industrial)
1	2,745
25	4,067
100	5,329

Table 4: Excerpt of Operating Hours by Application, Non-industrial (Reforence 3) Full table in "Deemed Plan A Tables" tab

Building Type	Operating Hours	
Office HVAC Pump		2,000
Retail Ventilation Fan		3,261
Hospitals Other Application		4,500

Table 5. Excerpt from Deemed ASD Tables tab showing incremental costs for ASDs (Referenco 8)

HP	Average Installed price (\$)
1	684
2	737
2	815
3	921
5	1,172

Table 6. Excerpt from Deemed Enhanced Cost Table tab showing incremantal costs for Enhanced NEMA Premium Notors (Roference 9)

	Plan A Incromental Cost	Plan B Incremental Cost
HP	$\$ 69$	$\$ 402$
9	$\$ 75$	$\$ 442$
2	$\$ 72$	$\$ 472$

Changes from 2008;

Prescriplive rebates will be offered for Plan A motors from $\mathbf{2 0 1 - 5 0 0} \mathrm{hp}$ in addition to previously offered rebales for 1-200 hp.
Prescriplive rebates for Plan B motors have been added for 2009
Prescriptive rebates for Enhanced NEMA Premium motors have been added for 2009

References:

1. CEE (Ccnsortium for Energy Efficiency) Premium Efficiency Motors Initiative - Source for premilum motor efficiencies, EPAct Standard Motor Efficiencles and baseline/incremental cosis
2. NYSERDA (New York State Energy Research and Development Authority), Energy \$mart Programs Deemed Savings Database - Source for Coincidence Factor
3. Efficiency Vermont's Technical Reference User Manual, 2004 - Source for operating hours for non-[ndustrial motors (p.15) and source for measure life, Source
for load factor (75%) and baseline/incremental costs
4. United States Industrial Etectric Motor Systems Market Opporturities Assessment, EERE, US DOE, Dec 2002 - Source for operating hours for industrial motors and source for load factor (Table 1-18 and 1-19)
5. Office of Industrial Eleciric Motor Systems Market Opportunities Assessment : Department of Energy (assessment of 265 industrial faclitiles in 1997) - Source for

VSD opportunity in the US markel aiong with Load Factors for Fans and Pumps along with average savings.
6. NWPCC (Northwest Power Conservation Council) RTF's (Regional Technical Forum) Archived Measures - Source for full motor cost
7. Net-to-g'oss factor from Energy Efficiency Best Practices (http:/www.eebestpractices.com)
8. Average cost for ASD Information from Grainger ($6 / 25 / 08$) online
9. Assumet costs for Enhanced NEMA Premium motors are 10\% higher than costs for NEMA Premium motors from Motor Master

Siandard Empiency Motor 7.5 HP 3600 RPMM OOP	Standerd Elfiency Molor	7.5	3800	OOP	87.5	67.54		
Silanderd Enfiency Moutr 90 HP 3600 ¢PMM OEP	Standard Elifieney Whotor	10.	3500	OPP	88.5	80,5\%		
	Standerd Efrictency Molor	15	31000	OCP	88.5	69.3\%	.	
Standend Effictorict Motor 20 HP 3600 RPWH OCP	Standiand Elficiency Motor	20.	3800	OPP	90,2	90.7\%	-	
Standerd Eticioncy Motor 2t HP 3600 RPM ODP	Standarct Efficincy Motor	251	36800	ODP	01	01.0\%	*	
Standard Eficiency Molor 30 MP 3600 RPM OLP	Stindiard Efficioney Motor	30	3 CaO	QOP	91	91.0\%		
Standard Elficitincy Molor 40 HP 3600 RPM OCP	Slandard Eliciency Molor	401	3600	ODP	91.7	91.7\%	-	
Standard Eticlency Molor St FiP 3800 RPPM OnP	Standird Efilciency Motor	50	3800	ODP	02.4	92,4\%	-	
Stunderd Eflicdency Motor 60 HP 3600 RPM M ODP	Standard Efficlency Hiotor	60	3800	ODP	83	93.0\%	-	
Stand Ind Efficioncy Motor 75 HP 3600 RPMM ODP	Starkaro Elmiciency Moters	75	38000	ODP	83	93.0\%	-	
Standard Effictency Motor 100 HP 3600 RPM ODP	SLandrat Elficiency Motor	100	38000	ODP	93	93.0\%	-	
Stonderd Effictency Motor 125 HP 3800 RPM OOP	Standard Emictancy Mollor	125	38600	ODP	03.6.	93.6\%	-	
Standard Efficiancy Mcior 150 HP 3600 RPM OOP	Slardord Emicipncy Moior	150	3800	ODP	03.6	93.8\%	-	
Standard Efficiency Molor 200 HP 3600 RPM ODP	Siondard Eliciancy Mololer	200	3800	ODP	94.5	94.5\%	.	
Standard Etrioncy Molor 1 HP 1200 RPM TEFC	Slandard Eticictoncy Molor.	1	1200	TEFC	80	60.0\%	-	
Standard Elficiency Molor 1.5 HP 1200 RPM TEFC	Standard Etfictancy Malor.	1.5	1200	TEFC	85,5	65.5\%		
	Stendard Eticiency Motor	2	1200	TEFC	38.5	80.5%		
Standard EFicioncy Motor 3 HP 1200 RPM. TEFC	SLandard Etfliciancy Mator	3	1200	TEFC	87,5	87,5\%	\cdots	
Stantard Exficiency Hotor 5 HP 1200 RPM TEFP	Standord Efficlancy Motor.	5	1200	TEFC	. 7.5	07.5\%	-	
Standard Effrciency Motor 7.5 HP q200 RPM TEFC	Standard Efficiency Motor	7.5	1200	TEFC	69.5	80.5\%	-	
Standerd Eficioncy Motor 10 HP 1200 RPM TEFC	Slandiand Efficioncy Moter	10	1200	TEFC	09.5	80,5\%	\%	
Slandind Eficiency Hotor 15 HP 1200 RPM TEFC	Slanderd Efticiency Mólor	15	1200	TEFC	80.2	g0, 24		
Slandard Enficiancy Molor 20 HP 12000 RPW TEFC	SLendord Eflugioncy Molor	20	1200	TEFC	80.2	80.2\%	-	
Standerd Efflemby Motor 25 HP 1200 RPPW TEFC	Slandard Efifictancy Molor	25	1200	TEFC	91.7	91.74		
Standard Efficlency Motor 30 HP 1200 RPM TEFCC	Standard Elificiency Motor	30	1200	TEFC	91.7	91.7\%	\bullet	
Standard mificioncy Mator 40 HP 1200 RPM TEFC	Standend Eliciency Motor	40	1200	TEFC	93	93.0\%	-	
Standard EFriciency Molor $50-4 P$, 1200 RPFW TEFC	Standard Efficiency Molor	50	1200	TEFC	93	93,0\%		
Standan Eliciancy Molor 60 HP 1200 RPM TEFC	Standads Efficiency Molor	80	1200	TEFC	93.6	93.8\%	-	
Standand Flicient y Molor $75 . \mathrm{HP} 1200$ RPM TEFC	Standard Elifeiency Molor	75	1200	TEFC	03.6	93.6\%		
Standand Erficioncy Molor 100 HP 1200 RPPM TEFC	Standard Efficioncy Motar	100	1200	TEFC	84. 1	94, 1\%		
Standord tirciefcy Moler 125 HP 1200 RPP TEFC	Standard Efficiancy Motor	125	1200	TEFC	94,1	94.16		
	Standard Elificiency Motor	150	9200	TEFE	95	95.0\%		
	Standand Elficioncy molor	200	1200	TEFC	95	85,0\%		
Standand IEficiancy Molor 1 HP 1000 RPM. TEFC	Slantand Eliciorncy Motor.	1	1800	TEFC	82.5	82.547		
Standart Emiciency Mofor 1.5 HP 1800 RPM TEFC	Slandand Effictercy Modor	1,5	1800	TEFC	8	84,0\%	-	
Standard Eficioncy Motor 2 HP 1800 RPM TEFC	Standarg Efticiency Motor	,	1800	TEFC	84	B4.0\%	.	
Standend Liticiency Motor 3 HP 1800 RPM TEFS	Standard Efficiency Motor	3	1800	TEFC	87.5	67.5\%		
Standard thiciancy Molor 5 HP 1800 RPM TEFS	Standatad Eliciengy Motor	5	1800	TEFC	87.5	67,5\%	-	
Standard Etifiming Motor 7.5 HP 1800 RPPU TEFC	Standard Efficiency Motor	7.5	1000	TEFC	89,5	88.5\%		
Slandird IEliciency Motor 10 HP 1800 RPM TEFC	Standered Eliclency Motor	10	1800	TEFC	69.5	89.5%	-	
Standard Efficioncy Motor 15 HP 1800 RPM TEFC	Suandard Efficiency Molar	15	1800	TEFC	01	01,04\%		
Sianderd Ifficiency Molor 20 HP 1600 RPM TEFC	Standard Efficioncy Mfolos	20	1800	TEFC	81	81.0\%	-	
Slanderd 1:ficiancy Motor 25 HP 1600 RPM TEFC	Standard Efficiencor Molor	25	1800	TEFC	02.4	92.44	-	
Slandard Efficiancy Malor 30 HP 18.00 RPM TEITC	Stundard Efticimery Motor	30	1800	TEFC	日2,4	92.4\%	-	
Standard Efficiency motor 40 HP 1800 RPPM TEFC	Sianderd Emicioncy Motor	40	1800	TEFC	93	83.0\%	-	
Standard Effelency Motor so HP 1 B00 RPPM TEFC	Slandard Efficlency Mpior	50	1800	TEFC	93	93.0\%	+	
Standerd Efirciency Mator 60 HP 1800 R PM TEFC	Sisudard Eficiancy Motor	60	1800	TEFCO	93.5	93.6\%	*	
	Slendard Efficiency Motor	75	1800	TEFC	94.1	94.1\%	-	
Slandard Eficioncy Motor 100 HP 1800 RPM TEFC	Stendiard Etaticiancy Molor	100	1800	TEFC	04.5	04.5策		
Stindard tiffichery hiolor 125 HP 1200 RPM TEFC	Slandard Efficioncy Molor	125	1800	TEFC	04.5	94.5\%	-	
Siendard Eticiancy Molor 150 HP 1800 RPM TEFCC	Standerd Efriciency Motor	150	1800	TEFC	95	95.0\%	-	
Suandard filiciency Miolor 200 HP 1800 RPM TEFE	Silimindard Efficiency Molor	200	1800	TEFC	05	95.0\%	-	

	Siandard Efticiency Motor	t	36003 TEFC	75.5	75.5\%	.
Slandard Efficiency Motor $1,5 \mathrm{HP} 3000 \mathrm{RPP}$ M TEFC	Slandad Efficioncy Mutor	1.5	3600 TEFC	62.5	82.5\%	$-$
Standard Efficlency Molor 2 HP 3600 RPM TEFG	Standard Etficioney Molor	2	3600 TEFC	84	84.0\%	
Standsud Eficiency Molor 3 HP 3600 RPM TEFC,	Standard Efliciancy Malor	3	3600 TEFC	85.5	65.5\%	-
Standard EMiciminy Molor S HP 3600 RPM TEFC	Slandard Efritioncy Motor	5	3600 TEFC	67.5	87.5\%	\square
SLandard Efficiency Molor $7.5 \mathrm{HP} \mathbf{3 1 0 0 0} \mathrm{RPM}$ TEFC	Slandard Elliciency Mutor	7.5	3600 TEFC	83.5	88.5\%	
SLendard Efiniciency Molor 10 HP 3800 RPM TEFC	Slandard Efficiancy Motor.	10	3000 TEFC	69.5	60.5\%	-
Stenderd EMficiency Molor 15 HP 3000 RPMM TEFFC	Standard Eficioncy Miolor	15	3600 TEFCD	90.2	90.2\%	.
Standard EFFFiciancy Motor 20 HP 3400.RPM TEFPC	Slandard Efilelency molor	20	3800 TEFC	90.2	90.2\%	
Slandand Elficiency Motor 25 HP 3800 RPM TEFC	Sianderd Etificiancy Holor	23	3600 TEFC	91	01.0\%	.
Standard Elficioncy Motor 30 HP 3800 RPM TEFC	Slandard Eliciancy Motor	30.	3600 TEFC	91	81.9\%	-
Standand Efficiency Motor 40 HP 38000 RPW TEFC	Stundard Eticlency Motor.	40	3600 TEFC	01.7	01.7\%	-
Standarm Efficincy motor 50 HP 3800 RPW TEFC	Standard Efficiency Molor	50	3600 TEFC	824	92.4\%	-
Siendard Eficiency motor 60 HP 3500 RPM TEEC	Slandard Efficioney Molop.	60	3000 TEFC	93	93.0\%	
Siendard Effletency Motor 75 HP 3800 RPM TEFC	Stardiad Eniclonty Motor	75	3 CDO TEFC	93	83.0\%	
Stondand Efteiancy Hotor 100 HP 3600 RPMW TEFC	Slarderd Ellicioncy Motor	100	3600 TEFC	93.6	63.6\%	-
Slantided Efficioncy Motor 125 HP 3600 RPM TEFC	Standard Eficisucy Motor	125	3 BOO TEFC	94.5	94.5\%	
Slandand Elficiancy hotor 150 HP 3600 RPM TEFC	Slanderd Eticiency Mlolor	150	3 SOD TEFC	94, 5	94.5\%	-
Standand Efficlancy Motor 200 HP 3600 R PM TEFC	Silandard Efficiency Mator	200	3609 TEFC	05	95.0\%	
Premium Eficiency Molor 1 HP 1200 RPM ODP	Promum Efiliciency Motor	1!	1200000	82.5	82.5\%	\$52
Premum Encioncy Molor 1.5 HP 1200 RPP值 ODP	Premium Eliciency Motor	1.5	1200 ODP	88.5	80.5\%	5150
Prominm Efliciency Molor 2 HP 1200 RPMOOP	Premum Efficiency Motor	2	1200 ODP	-7.5	87.5\%	581
	Premium Efficlency Wholor	3	1200 ODP	08.5	00.5\%	\$54
Premium Etriciency Motor 5 HP 1200 RPM ODP	Premum Eticlency Molor	5	1200 ODP	89.5	00.5\%	\$3
Premium Elicioncy Motor 7.5 HP 1200 RPM ODP	Promium Eticioncy Molor	7.5	1200008	90.2	90.2\%	5123
Premluin Emelerncy Modor 10 HP 1200 RPM OQP	Premium Eliuclansy Mötor	10	1200 OOP	91.7	91,7\%	5118.
Pramium Eliciancy hlotor 15 HPP 1200 RPM ODP	Premum Elicicioncy Motor	15	120000 P	81.7	91.7\%	\$1145
Promitun Elimency tutor 20 HP 1200 RPW ODP	Promium Emitioncy Motor.	29	1200000	92.4	92.4\%	\$115
Premium Eliciency Molor 25 HP 1200 RPM ODP	Pramum Effictancy Mmor	25	12 CO ODP	的 3	93.0\%	\$201
Promiun Eliciency Motor 30 HP 1200 RPM ODP	Promium Eficioncy Motor	30	1200 ODP	03.6	03.6\%	\$231
Premium Etheloncy Motor 40 HP 1200 RPM ODP	Premium Efliciency Molor	40	1200 ODP	84.9	34.1\%	\$249
Promiun E Ficiency Motor 50 HP 1200 RPM ODP	Promlun Efficiency Motor	50	1200000	0.1.	94, 18	5273
	Promkum Efricisincy Molor.	60	1200 ODP	94.5	94,5\%	\$471
Premlum Efielency thotor 75 HP 1200 RPM ODip	Premum Effichancy Molor.	75	1200 ODP	94.5	94,5\%	\$554
Promium Exiciency	Promhum Elficlency Molor	100	1200 ODP	95	95.0\%	\$6588
Premium Eticiency thotor 125 HP 1200 APM OOP	Promium Eficiency Moter	125	1200, Op	95	05.0\%	3841
Premium Etictancy Motor 150 HP 1200 RPM OOP	Promilyn Efficiency Motor	150	1200 ODP	05, ${ }^{\text {a }}$	95.4\%	\$9080
Ptemlum Efuclarcy Motor 2001 HP 1200 RPM ODP	Pramium Efticiency Molor	200	1200 ODP	95.4	95.4\%	5989
Prommium Eificiancy Motor 1 HP 18000 RPM ODP	Premulun Eficicioncy Motor	1	1000 ODP	85.5	65.8\%	\$52
Piomium Eficient Motor 1.5 HP 1800 RPM ODP	Pramlum Etificiency Molor	1.5	1800 ODP	86.5	88.5\%	5901
Premium Ef fimincy Molor 2 HP 18000 RPM ODP	Pramiun Eificiancy Wiolor	2	1800 ODP	86.5	86.5\%	51
	Promium Eliticiency Motor	3	180000 P	69,6.	80.5\%	354
Prembum Eficlency Motor 5 HP g gigu RPM OOOP	Promium Ethetancy Moder	5	18.00 ODP	89.5	89,5\%	+63.
Premium Eificiancy Molor 7.5 HP 1800 R PMM ODP	Pramium Eficiency Hotor	7.5	1800009	81	01.0\%	\$123
Premum Efficienty Molot 10 HP 1800 RPM COP	Premitm Efficiency Motor	10	1800 ODP	81.7	91,7\%	\$116
Premum Eficiancy Molos 15 HP 1600 RPM ODP	Premium Efirlency, Motor	15	1800 ODP	93	83, 0%	\$115.
	Premhum Efficiency Motor	20	1800 ODP	93	03.0\%	\$1, 15
Promlum Eifichancy Motor 25 HP Yedo RPd ODP	Promium Efficioncy Motior	25	1000 CDP	93,6	93.6\%	\$201
Pramium Elficlancy Motor 30 HP 1800 RPM ODP	Premium Eliclercy Modor	30	1800 OtP	04.9	94, 1\%	5231
	Premum Elficlency Molor.	40.	$1800000{ }^{\text {P }}$	94.1	94.1\%	\$249
Pretimium Elliciency Motor 50 HP 1800 R PM OODP	Premium Efifietency Molor	50	1800000	94,5	94.5\%	5273
	Prominm Efliciency Motor	601	18000 OP	05	85,0\%	431

Promlum Efficioncy Miotor 75 HP 18L00 RPM ODP	Premum Elinelancy Motor	75	1800	ODP	95	95．0\％	5554
Eremulun Efrioncy Motor 100 HP 1800 RPM OOP	Promium Elicioncy Molor	100	1800	ODP	85.4	战．4\％	\＄065
Premium Efficiency Molor 125 HP 1800 RPM OOP	Premum Eilieiancy Molor，	125	1800	ODP	85，4	95，4\％	3184
Premiwn Efficiency Molor 150 HP 1800 RPM OOP	Ptemamin Eficiency Motor	150	1800	ODP	95.8	95，8\％	\＄808
Promitm Eticiency Mouor 200 HP 1 doto RPM OOP	Preminm Eliciency Motor	200：	1800	ODP	758	05．0\％	\＄904
Promium Efficiency thotor 1 HP 3aco RPM ODP	Pramium Ejicitioncy Molor	1	3600	ODP	77	77．0\％	\＄52
	Ptermium Efticiancy Motor	1.5	3600	ODP	$8{ }^{\text {a }}$	04．0\％	\＄80
Promium E ficiency Motor 2 HP 3600 RPM ODP	Premium Efilelancy Motor	2.	3600	ODP	85.5	85．5\％	581
Prominum Efficiency Motor，3 HP 38g0 RPM ODP	Pramilim Eliciancy Motor	3.	3000	ODP	85.5	85．5\％	534
Promum Eficiancy Motor 5 HP 3600 RPM ODP	Premium Etiolency Motor．	5	3600	ODP	88.5	80．6\％	8.3
Premlun Eliciency Motor 7.5 HP 3600 RPM ODPP	Premium Eficiency Molor	7.5	3000	ODP	88.5	01． 6%	\＄123
Premium Eliciancy Motor 10 HP 3000 RPM ODIP	Promium Efiriancy Motor	10	3600	ODP	89.5	80．5\％	5116
Fremium Elifiency Motor 15 HP 3800 RPM OOPP	Promium Eficelency Molor	15	3800	ODP	80.2	60．2\％	\＄115
Premium Eficiency Motor 20 HP 3 3 do RPM OOP ${ }^{\text {P }}$	Premium Eficiency Moler	20	3600	ODP	11	01．0\％	\＄115
	Premilim Efictancy Molor	25．	3600	ODP	84.7	91．7\％	3201
Premlum Eliciency molor 30 HP 3000 RPM ODI ${ }^{\text {P }}$	Premmium Efirioncy Molor．	30	3000	ODP	01.3	91．7\％	\＄231
	Premium Eficlancy Motor	40.	31800	ODP	92.4	92．4\％	\＄2419
Premium Efficiency Motor 59 HP 3800 RPM ODF ${ }^{\text {P }}$	Premium Efledenc Motor	507	3600	ODP	93	93，0\％	\＄273
	Promiturn Efleioncy Molor	609	3600	ODP	93.6	93．6\％	3431
Premilum Effielency Motor 75 HP 3600 RPM ODP	Pramiun Etintengy Motor	75.	38000	ODP	昞 6	93．6\％	3554
Framlum Efficiency Mator 100 HP 33900 RPM OOP	Premium Efileloncy Motor	100	3800	ODP	93.5	91．6\％	\＄850
	Promlum Efilitioncy Molor	125	3600	ODP	94， 1	94．1\％	\＄841
Promium Eficiancy holor 150 HP 3600 RPMMODP	Premlum Efuriency Molor	150.	3600	ODP	94.1	94．1\％	\＄908
Promium Eficithcy thotor 200 HP 3800 RPPM ODP	Premum Eficiency Motor	200.	3600	ODP	85	85．0\％	3684
Pramium Eficlang Miolor 1 HP 1200 RPAH TEFC	Premum Enfiedengy Molor．	I	1200	TEFFC	02.5	82．5\％	552
Premum Elifelancy Molor 1．5 HP 1200 RPM TEFC	Premium Efficiency Molor	1.5	1200	TEFC	87．5	87．5\％	580
Premium Effieioncy Mitior 2 HP 1200 RPM TEFE	Premium Efiriancy Molor	2	1200	TEFC	88.5	88．5\％	381
Pramiun Effictancy Molor 3 HP 1200 RPM TEFC	Premourn Elifledicy Molor	3	1200	TEFC	89.5	89，5\％	54
Premlum Eficiency Motor 5 HP 1200 RPM TEFC	Premium Efllciency Molor	6	1200	TEFC	解． 5	69．5\％	563
Premilun Efficiency motor 7.5 HP 1200 RPM TEPC	Premium Eficiency Molor	7.5	1200	TEFC	91	01．0\％	5123
	Premlum Etticiancy Molor	10	1200	TEFC	91	91．046	\＄ 11818
Ptemium ETLioncy Motor 15 HP 1200 RPM TEFC	Premium Efiniancy Molor	16.	1200	TEFC	01.7	91．7\％	3115
Premium Efficiancy Hotor $20 \mathrm{HP} 1200 \mathrm{RPM4}$ TEFC	Promum Eliciancy Molor	20	1200	TEFC	01.7	01．7\％	3115
Premlam E，mency Motor 25＇HP 1200 RPM TEFC	Pramlum Eficiancy Molor．	25.	1200	TEFC	日3	03．0\％	3201
Premulum Eiticiency Motor 30 HP 1200 RPM TEFC	Premium Efitientay Molor	30	1200	TEFG	63	930\％	5231
Promium Eficiency Hotor 40 HP 1200 RPMA TEFC	Promlum Etificiancy Molor	40	1200	TEFC	94， 1	94，18\％	\＄249
	Premium Eficiency Motor	50	1200	TEFC	Qu． 1	94．1\％	3273
	Peomium Effriciancy Motor	60	1200	TEFC	04.5	94，5\％	\＄431
Pramium Efficiency Molor 75 HP 1200 RPM TEFC．	Premium Efficiency Motor	75	1200	TEFC	04.5	94．5\％	\＄ 355
Prembum Eiliency Molor 100 HP 1200 RP M TEFIC	Premium Efficiency Mhotor	100	1200	TEFC	85	02．0\％	3858
Promium Eflency Molor 125 HP， 1200 RPM TEFC	Premium Eficiency diotof	125.	1200	TEFC	85	05．0\％	3841
Premplim Eviciency motor 150 HP 1200 RPM TEFC．	Premium Eticiancy Mopor	150	1200	TEFC	95， 8	．93．8\％	\＄809
Promitm Eticiency Motor 200 HP 1200 RPM TEFC，	Premium Efiriency，Molar	200	1200	TEFC	95.8	05．6\％	\＄989
Premium Erictiency Motor 1 HP ， 1600 RPM ，TEFC	Premjum Efinioncy Motor	1	1800	TEFC	－85，5	65．5\％	555
Premium Eficiency Motor 1．5 HP 1800 RPM TEFC	Premium Efficiancy Molor	1.5	1800	TEFC	86.5	88．5\％	36
Pramlum Eillaioncy Motor 2 HP 18000 RPPW TEFC	Premilun Efinciency Modotor	2	1800	TEFC	68，5	88．5\％	\＄${ }^{\mathbf{S} 1}$
Premhum Eficioncy Motor 3 HP 1 SDO RPW TEFC	Premlum Eificiency Moior	3	1800	TEFC	80.5	60，5\％	854
Premium Eiliciency Molor 5 HP 1800 RP＇W TEFC	Premilum Efiriency Moior	5	1800	TEFC	80.5	80．5\％	1837
Premkum Elficlency Motor 7．5 HP， 1600 RPM TEEFC．	Premium Eificiency Molor	7.5	18000	TEFC	91，7）	81．7\％	\＄3123
Promium Efficiency Motor 10 HP 1800 RPM TEFC	Promium Eticioncy Molor	10	1800	TEFC	01.7	01.7%	\＄ 1110
Premium Elficiency Miotor 15 HP 1800 RPM TEEC	Premihun Efictency Molor	15	1800	TEFC	02.4	92．4Y	\＄195
Pramium Eficiency Molor 20 HP 1800 RPM TEFC	Premium Efficioncy Molor	20	1800	TEFC	93	93．0\％	\＄：115

Ruforonces

2 NYSERDA. (New York Stale Energy Research and Oovalopment Authorily). Energy \$mert Programs Deamed Savings Database
2 NYSEROA, (New York Stale Energy Research and Oovalopment Authoriy). Energy smari Progroms Deamed Savings Dababase
 source for foad factor (Table $1-16$ and $1+19$)

Loed Fastor Converition	$=.748(1 \mathrm{HPP}=0.746 \mathrm{kWh}$
Colncidence Festor	0.76

Exating Effictency Motor 1.5 HP 3 SOO RPM TEFC Extallon Elficlency Hotor

	Exating Efficimey Modor	2.		TEFC	78.5	75.5\%		
Existin9 Eficiancy Motor 3 HP 3600 RPM TEFC	Exating Efficiency Molor	3	3600	TEFC	80.6	00.6\%	.	
Exisiling Ethicioncy Molor 5 HP 3 BCO RPMM TEFC	Exiting Eticioncy Molof	3	3600	TEFC	83.2	83.2\%		
Eximing Exticlency Motor 7.5 HP 3600 APM TEFC	Exat ting Einciancy Molor	7.3	3600	TEFC	85.3	85.3\%		
Exalung Eniciency Motor 10 HP 3600 RPMA TEFC:	Exation Elicioncy Molor	10	3600	TEFC	86. 3	86.38	-	
Erisling Efficiency Motor 45 HP 3600 RPM TEFC	Existing Efficlency Motor	15	3800	TEFC	87.2	87.2\%		
Existing Eficiencry thor 20 HP 3600 RPM TEFC	Exisiling Efincluycy Motor	20	3000	TEFC	88, 1	B6,1\%		
Exising Efilithnyy Motor 25 HP 3600 RPM TEFC	Exisling Eliciency Motor	25	3600	TEFC	88.9	80.9\%		
Exdsling Enitiancy Molor 30 HP 3600 RPM TEFC	Exaling Efildency Motor	30	3800	TEFC	80.4	89.49x		
Exdsing Enicioncy Molor 40 HP 3600 R PM TEFC	Extsion Enictacy Motor	40	3800	TEFC	89.7	89.7\%		
Exisimg Enicioncy Motor 50 HP 3800 RPPM TEFG	Exdsling Efficiancy Motor	50	3800	TEFPC	89.9	60.9\%	-	
Exisiong Eniciancy Mator 80 HP 3800 RPM TEFC	Existing Efflobency Miotor	8 B	3800	TEFC	80.4	90.4\%		
Existing Enlicioncy Molor 75 HP 3600 RPM TEFC	Existing Etriciancy Molor	75	3800	TEFC	80.9	90.93	.	
Existing Eniclency Molor 100 HP 36600 RPM TEFC	Exaling Efficiancy, Malor	100	3600	TEFC	90,9.	80,0\%		
	Exasthe Emictoncy Molor	125	3600	TEFG	01, 3	91.3\%		
Exdisina Eficiancy Molor 150 HP 3000 RPM TEFC	Extring Efilictacy Motos	150	3600	TEEFC	91.7	91.7\%	-	
Exisiling Etiliconcy Motor 200 HP 3600 RPM TEFC.	Existho Elficioncy Moior	200	3600	TEFC	02.5	02.54		
Preminm Efficionty Molor 1 HP 1200 RPM OOP	Premium Eficiency Motor	1	1200	ODP	82.5	82.5\%	5	271.00
Premjum Efriciancy Moloe 1.5 .1P 1200 RPM ODP	Prembum Emiclency Molor	1.5	1200	ORP	86,5	60.5\%	5	300.05
Promkum Elficlangr Motor 2 HP 12000 RPM ODP	Preminum Eficioncy Molor	2	1200	OOP	87.5	67,5\%	3	327.80
Preminum Emationgy Motor 3 HP 1200 RPM ODP	Promikm Efficioncy Molor	3	1200	ODP	88.5	86.5\%	3	134. 20
Premum Efficioncy Molor 5 HP 1200 RPM ODP	Promium Eficiency Molor	5	1200	ODP	00.5	80.5\%	3	548.45
Prembut Efficiency Molor 7,5 HP 1200 RPM ODP	Prembum Effidincy Motor	75	1200	ODP	00.2	00.29	3	682.75
Premiem Efficlancy Molor 10 HP 12006 RPM 00 P	Pramhun Eindeacy Motor	10	1200	Opp	01.7	0.74%	3	003,45
Premium Efficiengy Motor 15 HP 1200 RPM ODP	Prembum Eificincy Motor	15	1200	ODP	01.7	81.7\%	3	1,041,00
Premium Eftelency Motor 20 HP 1200 RPM 000	Pramium Efiniency Molor	20	1200	ODP	92.4	92.4\%	\$	1,250,00
Premhm Efficlancy Motor $25 \mathrm{HP} 1200 \mathrm{R}^{\circ} \mathrm{PM}$ ODP	Prembum Eficioncy Molor	25	1200	ODP	83	03.0\%	?	1,532.15
Premium Efficlency Moior 30 HP 1200 RPM ODF*	Promilum Efficiency Molor	30	1200	ODP	93.6	93.6\%	7	1,600.00
Premum Efficiency Motor 40 HP 1200 RPM ODP	Priemum Eficiency Moior	40	1200	${ }^{008}$	04.1	94.1\%	5	2409.25
Premium Elficiengy Maler 50 HP. 1200 R PM ODP ${ }^{\text {P }}$	Premlum Efilicincy Molor	50	1200	OLP	94.1	94.1\%	$\stackrel{3}{3}$	2,704.30
Premplum Efficiency Molor $00 \mathrm{HP} \mathbf{1 2 0 0 ~ R P M ~ O D F ~}$	Promlum Etifioncoy Motor	80	1200	ODP	94,5	9.5\%	\$	3,335. 60
Pretmium Elficlency Motor 75 HP 1200 RPMM. ODF ${ }^{\text {a }}$	Premium Eliciancy Motor	76	1200	OOP	04.5	94.5\%	5	3,923,40
Premiun Enliangy Molor 100 HP 1200 RPM 10 OP	Promium Effeiency Molor	100	1200	ODP	95	95.0%	\$	4,700.60
Pramkinn Enidoricy Molor 125 HP 1200 RPM ODP	Premium Efficiency Molor	125	1200	ODP	85	95.04	5	5,410.20
Promium Eficioncy Moutor 150 HP 1200 RPM ODP	Pramiume Efictency Molor	150	1200	ODP	95,9	85.44	S	6,100.55
Premum Efictericy Motor 200 . HP 1200 RPM ODP	Premilum Efficiency Moior	200	1200	O'́P	85,4	05.4\%.	\$	1,231.25
Premlum Eliciency Motor 1 HP 1800 RPM ODP	Promium, Eficioncy Molor		1800	ODP	85.5	85.5\%		
Promium Elicioncy Motor 1.5 HP 1800 RPM PODP	Promium Elicioncy Motor	1.5	18000	ODP	88.5.	${ }^{86.5 \%}$	\$	
Pramium Emictancy Molor 2 HP 18000 RPM ODP	Promlum Efifielency Molor	3	1800	Opp	${ }^{88,5}$	66.5\%	5	
Premium Elificency Molor 3 HP 1500 RPM ODP	Premium Elificiency Motor	3	1800	Opp	89.5	6.9.5\%	5	283.15
Prembum Elicioncy Motor 5 HP 1000 RPM ODP	Prembum Eficiency Motor	5	1600	ODP	09.5	89,5\%	3	337.15 4685
Premmikn Efincency motor 7.5 HP 1.600 RPM OLP.	Premdum Efiliciency Molor	7.5	1000	ODP	01	91,0\%	3	
Preminm Eficiency molor 10 HP 1800 RPM ODP	Promium Eliriciancy Motor	10	1800	ODP	81.7	81.7\%	S	533.70
Preminum Efikiency Motor 15 HP 1800 RPM 0 ODP	Promium Eificiany Molor	15	1000	OPP	83	03.0\%	3	701.20
Promium Emeloncy Molor 20 HP 1500 RPM ODP	Pramium Eficiancy Molor	20	1800	ODP	83	93.0\%	3	881.05
Premium Elfrimey Motor 25. MP 1800 RPM OOF	Pramium Elficioncy Motor	23	1800	ODP	83.6	93.6\%	\$	1,027.10
Preamium Enficiency Modor 30 HP 18600 RPM OOF	Premium Elicioncy Molar	30	18006	OEP	04.1	94.1\%	3	1,151,70
Promium Efficlency Modor 40 HP 1800 RPM ODP	Prambum Eficlongy Motar	40	1800	Opp	04.1	04.15	13	1,469.15
Prenium Efficiancy Motor 50 HP 1800 RPM ODP	Pramiurn Etriciengy Molor	50	18006	ODP	04.5	04.5%	13	2.033 .95
Premlum Emplency Motor 60 HP 1800 RPM ODP	Prembum Eiticiency Molor	60	1000	ODP	0.5	05.0\%	3	$2,077,15$
Prombum Elirciency motor 75 HP 1800 RPM OOP	Premilum Etirichercy Molor	75	1800	ODP	85	05.04	3	$2,350.15$
Promivm Eliciency Molor 100 HP 1800 RPM OLP	Premiun Efriciency Molor	100		ODP	65.4	95.4\%	\&	3,108.E0

Preminum Eficiency Motor 125HP 1800 RPM DDP P	Promium Etitiency Molor	125	18000	ODP	95,4	65.4\%	5	3,560.15
Pramium Elicioncy Motor 150 HP 1800 RPM ODP P	Premium Etrictancy Motor	150	18000	ODP	05.8	05.0\%	\%	5,135.50
Premtum Eliciency wiolor 200 HP 1800 RPM ODP. P	Piemium Efticiancy Molor	200	1800	ODP	95.8	95.0\% 7	+	6,179,15
Premium Elficiontey Motor, HP 3600 RPbil ODP	Promium Effriancy Motor	1	38000	ODP	87	77.0\%	\%	240,90
	Premium Efficiancy Motor	1.5	38000	ODP	-6.5	85.6\%	3	273.85
Premium Elirciency Motor 2HP 3800 RPM ODP P	Premium Etiperangy Molor	$\frac{2}{3}$	380000	ODP	85	65.5\%	3	295.10
Premium Eliclencr Priolor 3 HP 3800 RPM ODP	Premium Efficioncy Molor	3	38000	ODP	00,5	6.5\%	+	344.30
Premium Eficieiency Motor 5 HP 3000 RPM1 ODP		7.5	30000	ODP	88.5	88.5\%	\%	453.30
Preminm Efficioncy Motor 7.5 HP 3600 RPMM ODP	Premdum Effelericy Molor	1.5	3800	ODP	88.5	60.5\%	1	\$44.75
Premum Efliciency Motor 10 HP 3goto RPM ODP	Premumin Elicioncy Molor	15	36000	ODP	90,2	00.2\%	5	8095. 35
Premitm Efficiency Molor 15 HP 3600 R.PM ODP	Premitum Eftciency Motar	20	36000	ODP	91	91.0\%	S	E31,35
Premium Efficiency Molor 20 HP 3600 RPM ODP Premium	Pramhum Efficiency Molor	25	3600	ODP	01.7	91.7\%	5.	1,030.35
Premium Efficioncy Motor 25 HP 36000 RPM ODP	Promiun Eficiency Motor	25	3600010	ODP	91.7	81.7\%	5	1.142 .60
Premium Eticiancy Motor 30 HP 3800 RPM OSP	Premium Eniciancy Motor	40	3 cojo	ODP	92.4	22.4\%	\$	1,475,85
Preminm Eficiency Molor 40 HP 3600 RFM ODP	Promium Emictancy Molor	50	36000	ODP	的	03.0\%	5	1.741 .95
Premilum Eticlency Motor 50 HP 3 BCO RPP4 ODP	Promium Elficiency Modor	60	3400	ODP	93,8	93,6\%	F	2,105.55
Promkum Elíciancy Molor \$0 HP 3000 RPM OOPP	Premium Eufioncy Motor	75	30000	ODP	93,6	03.6\%	5	2,616.80
Preminm Eficimey Motor 75 HP 3600 RPM OOP	Premumem Efficlency Miotor	100	3000	ODP	09.6	83.0\%	\$	3.310 .00
Ptemium Eticioncy tholor 100 HP 3800 RPM ODP	Premlum Encelancy Molor	125	3600	ODP	04.1	94.14	\$	4, 188,25
Premium Efticiancy Motor 125 HP 3800 RPM ODP	Promium Enteleryyy Molor	150	3800	ODP	64.1	94.1\%	\%	5,256,40
Premlum Efticlancy Motei 150 HP 3800 RPMM ODP	Premum Eticiency Molor	200	3600	ODP	05	05.0\%	\$	7,455,00
Premium Efficiency Molor 200 HP 3600 RPM ODP	Premium Eficiancy Motor	20	1200	TEFC	82.5	02.5\%	3	373.70
Premium Elficiency Alolor 1 HP 1200 RPM TEFC	Ptominm Efficisncy Motor,	1.5	1200	TEFC	87.5	07.5%	5	435.25
Promium Etiticmot Motor 1.5 HP 1200 RPM TEFC	Premium Efucioncy Motor	2	1200	TEFC:	88.5	88.5\%	\%	408,40
Promium Eticiency malor 2 HP 9200 RPM TEFC	Premium Effuctancy Motor Promumo Effictancy Motar	3	1200	TEFC	60.5	69.5\%	5	593.45
Premlum Elficioncy Molor 3 HP 1200 RPM TEFC	Promumon Efficiongy Motar	5	1200.	TEFC	89.5	88.5\%	5	736.90
Promium Enficiancy Motor 5. HP 1200 RPM TEFC	Pramilum Enficieng Motor	7.5	1200	TEFC	91.	91.0\%	8	860.20
Promhtm Eftciency Molor 7,5 HP Y200 RPM TEFC	Premium Efficiancy Motior	10	1200	TEFC	91	91.0\%	5	1,128.75
Pronülm Enticioncy Molor 10 HP 1200 RPM TEFC	Praminm Enticancy Molor	15	1200	TEFC	81.7	919,7\%	\$	1,560.35
(eremium Eliciciency Molor 15 HP 1200 RPMM TEFC	Prempum Etiscodecy Molor	20	1200	TEFC	01.7	01.7\%	5	1,803,40
Premitum Efifciancy Motor 20 HP 1200 RPM TEFC	Premmem Efitelency Moior	25	1200	TEFC	93	03,0\%	\$	2,150.75
	Premium Elficiency motor Piemium Eniciency Motor	30	1200	TEFC	03	03.0\%	3	2,386.80
Premiun Effletincy	Premimin Eniciency Moter	40	1200	TEFC	94.1	04.19\%	\%	3, 316.00
Premium Eficioncy hetor 40 HP 1200 RPM TEFC	Premidin Euiclency Motor	50	1200	TEFC	94.1	94.1\%	3	3,651.00
Promium Elichency Molor 50 HP 1200 RPM TEPC	Promilum Eilicigncy Mover	60	1200	TEFC	04.5	94.5\%	ξ	4.203 .75
Premium Effelenty Motor 60 HP 1200 RPM TEFC	Promium Elicioncy Molor	75	1200	TEFC	94.5	94.5\%	5	5,024.60
Premium Elficlenty Molor 75 HP 1200 RPM TEPFC	Pramum Eficiency Motor	100	1200	TEFC	的	95.0\%	5	7,157.35
Pramlum Etficiency Motor 100 HP 1200 RPM TEFC	Premilum Eficioncy Molor	125	1200	TEFC	95	95.0\%	+	0.244,20
Premium Efficianct Motor $125 . \mathrm{HP} 1200$ RPM 1EFC	Premum Efictency Molor	150	1200	TEFC	95.8	95.8\%	5	0,028.35
Promiun Etifiency Moter 150 HP 1200 RPM TEFC	Promium Efficiancy Molor	200	1200	TEFC	65.8	95.0\%	\$	11,508.55
	Pramlum Efriciancy Motor	2	1600	TEFC	85,5	65.5\%	\$	271.65
Premitm Efficioncy Metor. 1 HP 1 tooo RPM TEIPC	Promium Eficiency Motor	1,5	1800	TEFC	86,5	60.5\%	3	342.85
Premium Efficiency Molor 1.5 HP 1800 RPM TEFC	Promhum Eticençy Motor	1, 2	1800	TEFC	68.5	80.5\%	5	384.20
Preminm Embing Motor 2 HP 1800 RPPM TEIC	Premum Eficiency Molor	3	1800	TEFC	89.5	89.5\%	\$	300,00
Promhum Efficiency Molor 3 HP 1800 RPM TEIC	Premum Efficiertcy Motor	5	18180	OTEFC	89.5	69.5\%	5	452.55
	Premum Eliciency Molor	7.5	1800	TEFC	81.7	81.7\%	5	624.65
Pitmium Eticiency Motor 7.5 HP 1800 RPM TEFC	Promium_ Eiciciancy Motor	10	1.800	T'EFC	81,7	91.7\%		699.45
Pramium Eliciency Molor 10 HP 1800 RPM TEFC,	Promum Eficiency Mator	15	1800	OTEFC	92.4	924%		928,05
Premum Eliciency Motor 15 HP 1600 RPM TEFC Piemlum Eficiancy Molor 20 HP 1800 RPM TEFC	Prommun Efficiancy Motor	20	1800	TEFC	93	03.0\%	1	1,011.70
Premlum Eficiancy Molor 20 HP 1800 RPM TEFC	Premium Efficiancy Motor	25	1800	OTEFC	03.6	93,5\%	!	1,388.90
Prendum Elicyancy Motor 25 HP 1800 RPM TEFC	Premium Elficiancy Motor	30	1800	TEFC	93.6	93.6\%	5	1.578,00

Eremum Eificiency Molor $40 . \mathrm{HP} 1200 \mathrm{RPM}$ TEFC	Pramum Elficlancy Motor	40	1800	FEFC	04.1 ？	94．1\％	3	2，176．55
Premium Ethicientey Motor 50 HiP 1800 RPM TEFC	Pramium Elficiency Motor	50	1800	TEFC	94．5：	94．5\％	3	2，471，75
Preminm Efinciencs Molor 60．HP 1800 RPM TEFC	Pramium Emicioncy Malor	60	1000	TEFC	95	05，0\％	3	3， 3 E6． 55
Premum Elicioncy Motor 75 HP 1800 RPM TEFC	Preminm Efficioncy Molor	75	$1200 \mid$	TEFC	35.4	05，4\％	5	3，043．45
Premium Efficiency Motor＿100 HP 1800 APIM TEFC	Promium Eficiency Mator	100	1800	TEFC	05.4	85．4\％	3	4，687．60
Preminam Efliciency Motor 125 HP 1800 RPM TEFC	Pismium Efficiency Mfotor	125	1800	TEFC	95．41	85，4\％	\％	6，974，00
Premum Eticlancy Motor 150 HP 1800 RPP M TEFC	Promium Efficiency Motor	150	1600	TEFC	65．8	95．8\％	\％	7，723．15
Premum Eficioncy Motor 200 HP 1800 RPM TEFC	Premim Efficiency Molor	200	18.00	TEFC	ge． 2	98．2\％	\％	9，318．10
Premium Ericiancy Motor 1 HP 3600 RPM TEFC	Preminm Eficioncy Modor	1	3800	TEFC	77	77，0\％	3	25， 2.15
Premidim Elictenty Molor 1.5 HP 3600 RPM TEFC	Pramium Efficioncy Moder	1.5	3600	TEFC	84	84．0\％	5	301.35
Promium Eliciengy Molor 2 HP 3600 RPM TEFC	Promumefticiencr Molor	2	3000	TEFC	05.5	85．5\％	5	345，35
Premkum Emiclency，Motor 3 HP 3600 RPM TEFC	Premium Eticioncy Motor	3	3600	TEFC	065	0， 3 虫	婁	400.40
Pitmium Efticiency Molor 5 HP 3600 RPM TEFC	Promium Etficiency Molor	5	38000	TEFC	88.5	88．5\％	3	502， 90
	Promium Efficioncy Moler	7．5：	3600	TEFC	60.5	69．5\％	3	043，10
Promium Elficiancy Molor 10 HP 3800 RPMA TEFC	Promhum Efficlency Maler	10	3000	TEFC	90.2	00．2\％	予	683， 8.5
Premium Lefliciency Motor $15 . \mathrm{HP} 3800$ RPM TEFC	Premdum Efficiency Molor	15	3000	TEFC	91	91，0\％	3	914.40
Premium Ifificiang Moior 20 HP 3600 fPMM TEFC．	Promium Efficiency Motor	20	3000	TEFC	91	01．0\％	5	．1，143．00
Premium Eficiang Molor 25 HP 3600 RPM TEFC	Premium Efficioncy Motor	25	3600	TEFC	91.7	91．7\％	9	1，336．50
Premium Lificlency Molor 30 HP 3800 RPM TEFC	Promium Efficlency Molor	30	3000	TEFC＇	91，7	91.74	\＄	1，598．25
Premium Efficiency Modor 40 HP \＄600 RPM TEFC	Premium Efricioncy Molor	40	38001	TEFC	92.4	02．47	5	2，117．40
Premium Etifienty Mold 30 HP 3600 RPM TEFC	Premhum Eflucinincy Motor	50	3000	TEFC	03	93．0\％	\％	2，553，15
	Premkum Efficiancy Motor	60	3600	TEFC	03.6	93．6\％	\％	3.550 .50
	Premium Elficiencr Motor	75	3600	TEFC	03.6	93．6\％	8	4，505．60
Premium Eiflelency Molof 100 HP 3600 RPM TEFC	Premium Efficiency Molor	100	3600	TEFC	94.1	04．1\％	5	5.183 .55
Prenium Efficiency Motor $\mathbf{1 2 5} \mathbf{H P} 3600 \mathrm{RPM}$ TEFC	Pramum ．Elaciancy Molor	125	3600	TEFC	95	55．0\％	S	7．033．2\％
Premium Etficioncy Molor 150 HP 3 CDOR RPM TEFC	Pramium Emelency Molor	150	3600	TEFC	95	05．0\％	\＄	8，509．65
Premium Eticisincy Motor 200 HP 3600 RPM TEFC	Promum Elicielancy Motor	200	3800	TEFC	95.4	95．4\％	5.	10，825，40

maxturo 낭․

Office HVAC Pump	2,000
Rolal HVAC Pump	2,000
Hospolals HVAC Pump	2,759
ElomiSer Schoole HVAC Pump	2.190
Resteurant HVAC Pump	2,000
Whrehoc ere HVAC Pump	2,241
Holedsmpoty HVAC P Limp	4,231
Grocory IVAC Pump	2,090
Hededl HVAC Pump	2.559
Coderediniv HVAC Pump.	3, 0^{1919}
Office VGpullation F的	6,182
Rotitil Ventiulion Fan	3,261
Hospilale Ventiation Fan.	0,374
Elom/Ser: Sctiools Verntiolion Fig	3,609
Restauran Veniliation Fan	4.155
Warehouse Ventilation Fard	6, 389
Hotelatholets Venillation Fan	3.710
Grocery Ventidation Fan.	6.309
Heallin vornlilation E'en	2,000
Colloberumiv vonsilation Fan	3,631
Office Ola	4500
Relait Oilur Appliction	4500
Hospidars Oiner Appllealian	4500
Elem/Ser Schools Olher Applicetion	4500
Restaurant Ofher Agolitalion	4500
Warohouso Oiter Applicalion	4500
Molelsimplels Oilhes Agplicalion	4500
Grocary Chtor Application	4500
Heplih Oiner Application.	4500
Colleraliniv Oinor Agolicalion	4500

Relarathct

Saings Dalabath . Source for coincidanca factor, measure life, and molo
NYSERDA

factor dise (T Sthes 1-14 and $1-19$)

and sortics for molor loed factor dalaut value

hp	Plan A Interemental Cost	$\begin{gathered} \text { Plan B } \\ \text { Incrementa\|Cost } \end{gathered}$
1	\$69	5402
1.5	\$75	SMA2
2	\$72	5472
3	\$74	5518
5	\$ ${ }^{56}$	\$590
7.5	\$142	\$767
10	\$129	\$889
15	\$108	\$1,475
20	\$114	\$1,798
25	5218	\$2,320
30	$\$ 267$	\$2,750
40	5320	83.855
50	\$455	\$4,032
60	\$599	\$5,987
75	\$500	\$6,958
100	\$754	58,923
125	\$589	\$12,851
150	\$891	\$13,298
200	\$836	\$16.953
250	\$3,344	\$21,468
300	\$4,007	\$29,638
350	\$7,014	\$535,792
400	\$6,393	\$39,233
450	\$6,415	\$40,915
500	\$11,521	\$43,173

Costs were datermined for 1800 RPM TEFC molors, but will be used for all RPM and Types of Enhanced NEMA Premium motors as 1800 RPM TEFC is the mast common. Incremental costs for Plan A represents the cost differential between standard motor and efficient motor Incremental costs for Plan B motors represent the ful purchase and instalation costs lor the new motor

Program: Low Income Multi-Family Weatherization

Low Income service agency may apply for a grant to improve the ratural gas and electric efficiency measures of low income multi-family housing units and common spaces/systems.

Algorithms:;
Sawings wila be determined by results of an engineering audit of potential energy savings for the facility and living units. Calculations may include standard energy calculations or hourly energy modeling with recognized software packages. Savings for CFL lighting, refrigerator upgrades or evaporative coolers installed in living units will be deemed per other programs for low income partcipants or prescriptive programs.

We will use $\mathbf{1 0 0 \%}$ for the Net-lo-Gross factor for the Low Income Multi-Family Weatherization program.
We will use 7.14%, the percentage loss of electricity as it flows from the power plant to the customer, calculated using factors from rate case no. 07-00319-UT

References:

References for each custom efficiency projects will be documented.

Changes from 2008:
This program is new for 2009

NEW CONSTRUCTION SAVINGS TECHNICAL ASSUMPTIONS

Program: New Construction

This is a custom program including electric and gas measures. There are three choices of tracks customers may choose lo follow. This program is unique in that X cel relies heavily on expert consultant in the design process; however, we will perform independent project review in accordance with standard engineering methods. Customer may apply for rebate under the New Constuction Program.

Calculations:

Electrical iand gas energy savings and electrical demand savings will be calculated based on the project-specific delails. Each project will undergo an engineering review in accordance with standard engineering practices. Prescriptive items within the project will be handled through their respective deemed programs.

Assumptions:
Net-lorgross a Electic 9a\% for the EDA tracks and 93\% for the Energy Eficient Bultings track. Gas EOA NTG is 99\% and Gas Eneroy Efficient Building track is 97\%. Program requirementh are well above codt, so feel free-ridership will be negligible. Gas tree riderghip will be lowar than electric becpuse gas programs arb new to Coloredo.

Transmission-Distribution Loss Factor $=6.39 \%$, the percentage loss of electrictiy as it fows from the powar plant to the customer, calculated using faclori from Enhanced DSM Filling SRD-2
Electric Rebate amount is $\$ 300 \mathrm{~kW}$ saved
Assume 55% additional savings from using Enhanced Modellng track over Basic based on actuals from MN program
Operation and Maintenance Savings will be calculated for each specific project based on project details.
Life of product is 20 hederistingas and efecticimeasures.
Changes from 2008
This is a new program for 2009.

Low income service agency may apply for a grant to improve the natural gas and electric efficiency measures of tow income non-proft housing units and common Bpaces/systems.

Algorithms:

Savings will be determined by results of an engineering audit of potential energy savings for the faclity and living units. Calculations may include standard energy calculations or hourly energy modeling with recognized software packages. Savings for CFL lighting, refrigerator upgrades or evaporative coolers installed in living units will be deemed per other programs for low income participants or prescriptive programs.

We will use 100\% for the Net-to-Gross factor for the Low Income Non-Pronit Weatherization program.
We will use 7.14%, the percentage loss of electricity as it flows from the power plant to the cusiomer, calculated using factors from rale case no. 07-00319-UT

References:
References for each custom efficiency projects will be documented.
Changes from 2008:
This program is new for 2009

Program: Procose Efflelancy

The Process Eficiency Business Program targels energy intensive processes at large industrial taciilities Customers who implement identiiied upgrades may receive rebaids lor large procass changes that are not completed through Custom Elticlency or the prescripilve programs.

Cajculationa:
Elecirical enirgy sawings, electrical demand savings and gas savings wil bet calculaled based on the methodologles presented in each of the and use programs
A net-to-gross lactor ol 86.6% will be used for alecticc Process Efilicency projects.
A net-lo-gross factor of 93.9% will be used for gas Process Efficency profecls. This represents one hall of the free riber faclor for eleciric projeechit becausa gas programs arer new to Colorado.
A transmiskian distribulion loss factor of 6.39% will be used for Process Efficiency projects. This was calculated using factors from Enhanced DSM filing-SRO-2
Changes fram 2008
The Process Efficiency Program is new for 200 S.

Electric Net to Gross= 0.866
Gas Net to Gross $=0.933$
ElectricNTG Factor based on Frontier from the Energy Efficiency Best Practices CA website, custom projects
Gas Net to gross is determined by assuming one half of the electric free fider factorfree rider factor $1 / 2$ of electric ($1-((1-.866) / 2))=.93$

RECOMMISSIONING SAVINGS TECHNICAL ASSUMPTIONS

Program: Recommissioning

Recommissioning is a special program that involves a Study phase and an Implementation phase. The customer may apply for rebate under the Recommissioning Program, Each Recommissioning project will be analyzed indluidually by Xcel Energy. A qualified engineering vendor will perform the stucty and provide a report and technical calculations to Xcel Energy for review. Analysis will be based on standard engineering methodologies, Customer may also submit for implementation a proposed "Fast Track" project without going through the Recommissioning Study phase, as long as they have performed a study. Recommissioning projects do not have to demonstrate a TRC factor greater than one on a project by project basis. In that regard the program is similar to deemed programs. In most other respacts it is more of a custom program.

Calculations:

Electric and Gas energy savings and electrical demand savings will be calcutated by a study vendor based on the project specific details. Each project will undergo an engineering review by X cel Energy in accordance with standard engineering practices.

A net-to-gross factor of 100% will be used for Recommissioning projects, based on the following justification: Without having completed a recommissioning study through our program, the customer would not have known about the opportunities. If they would have known about them, they would have dene them on their own due to the likellhood they are no/low cost items with very quick paybacks.
A transmission distribution loss factor of 6.38% will be used for recommissioning projects. Reference the Enhanced OSM filing, SRD-2; no significant system changes have been noted since then.
Persistence of the Recommissloning product (product ife) is set at 7 years, refarence "Recommissioning Persistence - Task 1 Benchmarking Deliverable 040607.pof ${ }^{\prime}$

Changes ifom 2008

1. A gas rebate is being proposed for the first time.

Program: Refrigerator Recycling

Rebates will be offered for pickup of a secondary working refrigerator that will be demantfactured and re-cycled.

Algorithrre:	
Refrigerator Electrical Energy Savings (Customer kWh)	$=$ [Baseline Product Consumption - Efflcient Product consumption] $=1,025$ kWh/refrigerator recycled
Refrigerator Electrical Demand Savings (Customer kW)	= Refrigerator Electrical Energy Savings / B760 x Average_to_Peak_kW_Factor $=0.139 \mathrm{~kW}$
Electrical Energy Savings (Gross Generator kwh)	\# Customer kWh / (1-TDLF) $=1,104 \mathrm{kWh}$
Electrical Demand Savings (Gross Generator kW)	$=$ Customer $\mathrm{kW} \times$ CF / ($1-$ TDLF) $=0.150 \mathrm{~kW}$
Electrical Energy Savings (Net Generator kWh)	$=$ Gross Generator $\mathrm{kWh} \times$ NTG $=673 \mathrm{kWh}$
Electrical Demand Savings (Net Generator kW)	$=$ Gross Generator kW \times NTGG $=0.091 \mathrm{~kW}$

$\left.\begin{array}{l}\text { Variables: } \\ \begin{array}{|l|l|}\hline \text { Baseline Froduct Consumption }\end{array} \\ \hline \text { Efficient Pioduct Consumption } \\ \hline\end{array} \begin{array}{l}\text { Baseline Product Consumption is the average current year consumption for } \\ \text { refrigerators manufactured } 1993-2000=1025 \mathrm{kWh} \text { in } 2009 \text { and } 1063 \mathrm{kWh}\end{array}\right\}$

O\&M savings	$=$ Operation and Maintenance savings are assumed to be zero for refrigerator recycling. CF

Provided by recycling vendor/homeowner:
Verified during M\&V:
Confirm refrigerator was removed
Yes
Confirm refrigerator was working prior to removal
Yes

Assumptions:
Rebates are available only for working secondary units released by owners.
Changes From 2008:
New program for 2009

Tablo 1. (Reforence 1 and 2)		Baseline kWh		
Year of Manufacture	\% Share	2009	2010	Remaining Life
1993	11.0\%	1,180	1,224	4.5
1994	11.9\%	1,128	1,169	5,0
1995	12.5\%	1,080	1,120	5.5
1996	12.9\%	1,042	1,080	6.5
1997	12.9\%	1,004	1,042	7.5
1998	12.9\%	969	1,004	8.5
1999	12.9\%	934	969	9.5
2000	12.9\%	901	934	10.5
Welghted Avorage		1025	1063	7.3

References

1. Baseline kWh and Average to peak kW ratio from Energy Data Sourcebook for the U.S. Residential Sector. Berkeley, CA: Lawrence Berkeley National Liaboratory. LBNL-40297
2. Remaining Life and \% share from US DOE, Technical support document: Energy efficiency standards for consumer products: Refrigerators, refrigerator-freezers, and freezers including draft environmental assessment, regulatory impact analysis, 1995 Jul 3. Net-to-Gross factor from Fort Collins Utility repart

Program: Residential Saver's Switch New A/C

Calculations:	
Saver's Switch Electrical Energy Savings (Customer KWh)	F Average kW per Unil x Full Load Hours of Operation
Saver's Switch Electrical Demand Savings (Customer kW)	= Average ${ }^{\text {kW }}$, pier Unit
Electrical Energy Savings (Gross Generator kWh)	
Electrical Demand Savings (Gross Generator kW)	- Customer kW x CF/ (1-TDLF)
Electrical Energy Savings (Net Generator KWh)	= Gross Generator kWh x NTG
Electrical Demand Savings (Net Generator kW)	= Gross Generator $\mathrm{kW} \times$ NTG
Variables:	
Average kW per Unit	= Average kW per AC Unit $=3.000 \mathrm{kW/unll}$ (Reference 1)
Full Load Heurs of Operation	= Equivalent Full Load Hours ol Operation that a Swith achieves energy savings by controling an afc unit during a typical year. Value includas equivalent hours during control discounted by the equivalent full load hours of payback period after the control. during which usage is increased. = 0.72 hours (Reference 1)
CF	Coincidence Factor = Percentage of the kW savings that occur during the annual hour of system peak. $=35.27 \%$ (Reference 1)
Measure Lifo	= Length of time the swich will be operational = 15 years from reference 1
TDLF	Transmission Distribution Loss Factor $=7.14 \%$ based on the Enhanced DSM filing, SRD-2
NTG	- Net-to-Gross factor for Saver's switches will be 100% as customers would not have lhe ability to install a switch withoul the program.
Provided by Customer: Number of units with switch installed.	Verlfled during M8V: Yes
Assumptions: Customer $k \mathbf{W}$ value is the connected amps volt kW , and probably will not occur on even the hottest day due to AC over sizing. Oversizing is taken into account in the Coincidence Factor	
Changes from 2008	
Customer incentive revised from 2008	
References 1. 2007 Xcal Energy Colorado Residentiel Saver's Switch I	oact Evaluation.

DEEMED SAVINGS TECHNICAL ASSUMPTIONS

Program: School Education Kits
A package of energy efficiency and water conservation classroom activities combined with projects for home thal is targeted at sixth grade students in the Colorado servica lerritory. The program is known as LivingWise and each participant receives a 'LivingWise Activity Kit' containing a high-efficiency showerhead, a kitchen sink eerator, and two compact fluorescent bulbs, in addition to olhor oducalional items auch as a themnometer, filler alam, leak deteclion leblet, night light and tape measure.

Algorithms:	
CFL Electric Energy Sodings (Customer kWb)	\% Number of Bülbs \times (kiw EE - kiW Baso) \times Hrs
CFFL Elecric Demand Savings (Cuslomer kW)	I Number_ol Bulbs \times (kW , EE $~=~ \mathrm{~kW}$ _Base)
Showemead Gas Savings (Gross Din)	$=$ (GPY Saved \times Dolla T $\times 8.33$)/ HGE \times SPD
Agrator Gas Savings (Gross Dth)	E (GPY Saved \times Della_J \times B.33)/ $/$ HGE
Net Dih	= Gross Dih \times NTG
Electrical Enurgy Savings (Gross Generator kW/h)	- Cuslomer kWh / (9-TDLF)
Elactrical Demand Savings (Gross Generator kW)	F Cuslomer kW x CF / (1-TDLF)
Electricat Ennigy Savings (Net Generator KWil).	- Gross Ganerator KWh x NTG
Electrical Demand Savings (Nal Ganarator kV)	= Gross Generator kW x NTG
Variables:	
Number of Bulbs	1: Number of bulbs provided in each kil $=2$.
Hrs	: Annual operational hours per year of the fixture. We will use 1210 hours which represents the everage aperating hours for the first 5 CFLs installed in a house. (Reference 1)
CF	: Coincidence Factor, the probabblity that peak demand of the lighls will coincide wilh paak utility system demand. 0.09 will be used for prasciptive rebsles (Reference 1)
kW_EE	= Fonture watlage (kW per fiture) for the two CFLs provided in the kil. We will ust 0.019 kW which is the average for the wo bullbs per kil.
kW_Base	= Fixture waltage (kW per fixture) for the two incandescent bulbs that the CFLS will replace, We will use 0.06526 hw which is the average of the two bulbs par kit.
GPY_Saved	In Gallons per year of hot water saved with high-eficiency showerhead (for one showar per day) or aerator assuming 65% of watar flow is hot water. Showerhead $=1660$ gallons per year par shower, Aeralor $=657$ gallons.
Delta_ 7	$=$ Change In temperatura of water from incorning watar tamperature to water heater temperature selting. Delta_ \boldsymbol{T} is 74 degrees F. (Referance 4)
HGE	= Heal generation efliciancy based on steady-state water heater efficiency. Used value oll 0.76 . (Reference 2)
$\overline{S P D}$	7 Number of showers per day $=1.32$ based on 2.84 people per home and 2 bathrooms. (Reference 4)
Incremental Cosls	Cosis per Table 2; Measure Cosi
TDLF	Transurission Distribution Loss Factor $=7.14 \%$, the percentage loss of elactricity as it flows from the power planl to the customer, calculated using factors from Enhanced DSM Fillng SRD-2
Net-to-Gross Factor	$=$ We will use 70% for the gas measures in the school education klis per Dave Munk of RAP, and we will use 93\% for the CFL. measure.
Medsura Life	Measure lives are shown in Table 1.
O\&M saving	- Operation and Maintenance savings are assumed to be zero for the school education kils.

Provided by Cumtomer:	Verinied during MAN:
Yes	

Measures have been inslalled
Yes

Assumptiona:
Showerheade:
-2.5 gpm repfaced with 2.0 g m, resulling in 1.660 gallorts of annual water savings per shower, (reference 2.2)

- 1.32 showers per day al 6.9 minutes per shower (refarence 2.3)

Faucet aeralors:
-2.2 gpm replaced with 1.8 gpm in bathroom, resulling in 657 gallons of annual waler tavinge. (raference 2.3)

- 17 gallday tsed by 3 primary sinks (33% per sink) (raterence 4)

Table 1. Monsure Lifo \|Measure	Measure Lifa	Source
LW Kit-Showar heads	6	Reference 5
LW Kil-Faucal Aarators	5	Reference 5
LW KOt-CFLs	6.61	8000 hour CFL lamp divided by average hryr (1210 hr/yr)
Table 2 Measure Cost	Massure Cost	Source:
LW Kit-Showar heads	\$12	Vendor quote per kit allocated to
LW Kil-Fauctil Aeralors	512	number of items providing savings.
LW Kit-CFLg	$\$ 23$	

Changes From 2008:
This is a new program for 2009

Referances

1. Composite Wattages, Operating Hours and Coincldence from CFL METERING STUDY FINAL REPORT, Prapared for Pacific Gas $\&$ Electric Company, San Diego Gas \& Electric Company, Southern California Edison Company, 2005
2. Departmert of Energy Domestic Hot Water Appliance Calculator
3. Japanese study: "The effects of variation in body temperature on the preferred water temperature and flow rale during showering"

Authors: Tadakatsu Ohnaka. Yutaka Tochihara, Yumiko Watanabo. Affiliations: a) Department of Physlotogica: Kyglene, The Institute of Public Heath,
Minato-ku. Tokyo, Japan; b) Facully of Home Economics, Jissen Women's Universily, Hino, Tokyo, Japan.
4. Handbook of Water Use and Conservation, Denver Waler Conservalion
5. Califomia Measurement Advisory Committea (CALMAC) Prolocols, Appendix F (www,calmac.org/events/APX_F.pdI).

SEGMENT EFFICIENCY TECHNICAL ASSUMPTIONS

Program: Segment Efficiency

This is a custom program that involves an energy and financial analysis of existing facilities. Customer may apply for rebate under the Segment Efficiency Program. Each project will be analyzed individually by Xcel Energy. Technical variables required for the analysis will be obtained from the customer or vendor. Analysis will be based on standard engineering methods. Prescriptive rebates may be given for measures identified during the analysis that qualify under prescriptive end use programs.

Calculatlons:
Electrical and gas energy savings and electrical demand savings will be calculated based on the project-specific details. Each project will undergo an engineering review in accordance with standard engineering practices. Where prescriptive elemenis exist, the calculations will be in accordance with the calculation methodologies detailed in the prescriptive programs.

Changes Irom 2008
This is a now program for 2009.

Assumptions
A transmis sion distribution loss factor of 6.39% will be used for custom projects. This is calculated using factors from Enhanced DSM Filing -SRD-2

We will conservatively use NTG for each end use technology as stated in their respective technical assumptlons. Actual NTG should be closer to $\mathbf{1 0 0 \%}$ bercause these customers have historically not participated in the programs.

TEGHNICAL ASSUMPTIONS
Program: Seli-Direct

Calculationa:

Electricel enery savings and electrical demand smings will be calculatod basad on the actual savings from a project.

 projacts comiteled by lape Colorpdtp cusitamers from 2006 to 2008.

Measure life and operalion and mairhenanca tevings will be calcutated fior each project.
Chinges from 2000
The Self-Diracl Program is new for 2009.

	\% of saving	NTG Factor	weighied	
Cooling	0.063766944	0.937	6%	
EMS	0.026063631	0.87	2%	
Lighting	0.389723422	0.96	37%	
Custom	0.264643412	0.86	23%	
Compressed Air	0.255802591	0.867	22%	
			90.6%	

NTG Factor based on the Energy Efficiency Best Practices CA website $\%$ of Savings based on large CO completed Custom Efficiency projects

DEEMED SAVINGS TECHNICAL ASSUMPTIONS

Program: Low Income Single Family Weatherization Rebates

Residential tow-income natural gas and electric customers can energy efficiency measures periormed at nc-cost to them.

Algorithms:	Energy savings for the ceilling insulation were calculated in REM/Rate using a baseline home model calibrated to home size and characteristics for the Denver area (see below for characteristics.) Savings 1s 7.9.0th.
Ceiling insulation from R-11 to R - $\mathbf{3 6}$ natural gas savings (Gross Dth)	
Wall insulation from $\mathrm{R}-3$ to R -11 nalural gas savings (Gross Dth)	Energy savings for the wall insulation were calcinated in REM/Rate using a baseline home mode calibrated to home size and characteristics for the Denver area (see below for characteristics.)
New HE Furnace AFUE 92\% nalural gas savings (Gross Dih)	Energy savings for the gas furnace were calculated in REM/Rate using a baseline home model calibrated to home size and characteristics for the Denver area (see below for characteristics.) Savings is 11.1 Dth.
Refrigerator replacement electric energy savings (Customer l:Wh) and demand savings (Cuslomer KWI	Energy savings for the refrigerator were based on the Energy Star Refrigerator Savings Calculator: hitp://www.energystar.gov/index.cfm?c=refrig.pr_refrigerators. Savings is 584 kWh and 0.08 kW .
16 CFLs electric energy savings (Cuslomer kWh) and electric demand savings (Cuslomer kW)	Energy and demand savings and annual hours of operation for compact fluorescent lamps are based on data and calculations derived from the 2002 US Lighting Market Characterization performed for the Department of Energy in 2002. Energy savings are 784 kWh and demand savings are 0.77 kW .
Net Dth	- Gross Dth \times NTG
Electrical Energy Savlngs (Gross Generator k	$=$ Customer kWh / ($1-$ TOLF)
Electrical Demand Savings (Gross Generator	= Customer $\mathrm{kW} \times \mathrm{CF} / \mathrm{C}$ (1-TDLF)
Electrical Einergy Savings (Net Generator kW	$=$ Gross Generator kWh x NTG
Electrical Demand Savings (Net Generator k	= Gross Generator kW \times NTG
Variables:	
NTG	Net-to-Gross Factor = We will use 96\% based cn reference 5.
O8M savings	Operation and Maintenance savings = We will assume no O\&M savings.
TDLF	Transmission Distribution Loss Factor $=7.14 \%$, the percentage loss of electricity as it flows from the power plant to the customer, calculated using factors from Enhanced DSM Filing SRD-2

Type of meagure:	Measure life:	Incremental cost:	Colncidence Factor:
Ceiling Insulation	20 years (Reference 1.$)$	5715.(Reference 6)	NA
Wall insulation.	20 years (Reference 1.)	\$670 (Reference 6)	NA
HE furnate AFUE 92\%	18 years (Reference 12)	\$623 (Referenice 13)	NA
Refrigerator replacement	7.3 years (Reference 14)	\$631 (Reference 3)	100\% (by definition per calc)
CFLS	7:9 y yars (Reference 9)	\$60 (Reference 10)	8\% (Reference 9).
Provided by Customer: Type of measures implemented		Verified during M\&V: Yes	

[^3]

Referencest:

1. California Measurement Advisory Commillee (CALMAC) Protocols, Appendix F (www.calmac.org/events/APX_F.pdf).
2. 2006 FResidential Energy Use Colorado Service Area - Xcel: Bruce Neilson
3. Colorado Governor's Energy Office (GEO)
4. Xcel Energy CO DSM Polential 2008 - prepared by Kema
5. National Energy Efficiency Best Practices Study - Residential Single-Family Comprehensive Weatherization Best Practices Report from December 6. RS Means Repair and Remodeling 2007 al a cost of $\$ 0.028$ per square fool per increase in R-value.
6. Natlonal Energy Audit Tool (NEAT) and Frontier estimates.
7. EEBP web site - Tacoma Residential Weatherization program,
8. US Lighting Market Characterization Study performed for the Department of Energy in 2002
9. MEEA/ES Change A Light campalgn
info
10. Xcel Energy estimate
11. Draft Technlcal Support Document: Energy Conservation Standards for Residential Fumaces and Boilers, Effidency Standards for Consumer Prepared for US DOE, September 2006
12. California Energy Commission's Database for Energy Efficient Resources (DEER)
13. www.energystar.gov
14. DOE 2007
15. Appliance Magazine, September 2007

TECHNICAL ASSUMPTIONS

Program: Small Business Lighting

The Small Business Lighling Program provides free bighing afficlency audils to small and mild sized businesses. Customers who implemanl identified luhting upgrades may recelve rebales through the Lighling Efficiency or Custom Efficiency programs.

Calculatlons:
Eloctrical entrgy asvings and electrical demand savings will be calcutaled based on the melhodotogies and assumplions presented in the Lighting Eficiency and Cuslom Eficiency programs.

A nat-lo-gross facior of 100% will be used for sroall bukinest lighting projects.
A transmission distribution foss factor of 8.39% will be used for smail business lighting projects. This was cpiculaled using faclors from. Enhanced DSM Filing-SRD2

Changes from 2008
The Small Business Lighling Program is now for 2009.

Program: Standard Offer

Standard Cffer utilizes an ESCO, pre-qualified by the Govemor's Energy Office, or a Customer-chosen vendor to perform a pre-formatted Investment grade audit from which comes a bundled set of measures that the customer, by agreement, must implement. The customer may apply for a rebate under the Standard Offer Program or the implementation funding can come from the ESCO. Analysis will be based on standard engineering methodologies. Prescriptive rebates will not be offered in this program.

Calculations:

Electric and Gas energy savings and elecrical demand savings will be calculated by an ESCO or a Customer-chosen vendor based on facilityspecific delails. Each project will undergo an engineering review by Xcel Energy in accordance with standard engineering practices. M\&V plans will be required for all Standard Offer projects and must last a minimum of three years.

A net-to-gross factor of 81.3% will be used for electric projects in 2009. A net-to-gross factor of 87.6% will be used for electric projects in 2010 . A net-to-gross factor of 93% will be used for gas projects in both years.
A transmission distribution loss factor of 6.39% will be used for Standard Offer projects. Reference the Enhanced DSM filing, SRD-2; no significant system changes have been noted since then.

Measure life and operation and mainteriance savings for Standard Offer projects will be calculated for each project as part of the Techrical Energy Audit
Changes from 2008

1. Standard Offer program is being offered for the first time.

Program: Water HeatIng Rebates

Residential natural gas customers receive a cash rebate for purchasing high-efficiency natural gas waler heating equipment.

Algorithms: Standard tank water heater 0.62 EF Natural gas savings (Gross Dth)	Energy savings for the gas waler heater are based on federal minimum efficiency requiremenis for a baselina water healer, The replacement model has an Efficiency Factor (EF) raling of 62%, which is the current Energy Ster Standard. All savings were calculated in EnergyGauge using a baseline home model calibrated to typical home slze and characteristics for the Denver area (sea below for characteristics.) Savings is 1.08 Dithlyr
Standard tank water heater 0.65 EF Naturai gas savings (Gross Dth)	Energy savings for the gas water heater are based on federal minimum elficiency requirements for a baseline water heater. The replacoment model has an EF rating of 65%. All savings were calculated in EnergyGauge using a beseline home modal callbrated to rypical home size and characteristics for the Denver area (see below for characteristics.) Savings is 2.08 Dith/Mr.
Standard tank water heater 0.67 EF Natural gas savings (Gross Dth)	Energy savings tor the gas water heater are based on federal minimum efficiency requirements for a baseline water heater. The replacement model has an EF rating of 67\%. All savings were calculated in EnergyGauge using a baseline home modei calibrated to typical home size and charecteristics for the Denver area (see below for characteristlcs.) Savings is 2.66 Dithyr.
Tankless water heater 0.82 EF Natural gas savings (Gross D(h)	Energy savings for the gas waler heater are based on federal minimum efficiency requirements for a basoline waler heater. The replacement model has an EF rating of 82%, which is the current Energy Star Standard. All sevings ware calculated in EnergyGauge using a baseline home model calibrated to typical home size and charactertstics for the Denver area (see below for characteristics.) Sawngs is 5.91 Dthyr.
St	

NTG	Net-to-Gross Factor = We will use 90\% based on letter
Measure life	= 15 years for standard tank water heater and 20 years
Unit Type	Incremental Cost:
Standird tank water heater 0.62 EF	\$55.00
Standard tank water heater 0, B5 EF	\$175.00 (Reference 1)
Standard tank water heater 0.67 EF	\$230.00 (Reference 1)
Standard tenk water heater 0.82 EF	\$750.00

Proulded by Customer:	Verifed during MBV:
Yype of unk installed	Yes

Type of unl: installed Yes

Assumptions:

The baseline water heater is 40 galton capacity with an Efficiency Factor (EF) of 59\%.
The average baseline product cost is based on the cost from RS MEANS Repair and Remodelling Cost Data 2007

Changes From 2008:
This is a new program for 2009
Bullding Charactorlatice for Prototype Home Used for Modelling:
Single Family
Two story (Reference 3)
3 bedroom 2 bathroom (Reference 3)
2000 square feel (Reference 3)
Basement foundation (Relerence 3)
HVAC:
heating - gas furnace 78 AFUE (55.9 kBtu unit required) - 85% of homes have gas heating, and 78% of which are forced air furnaces (Reference 2) cooling - 59% have Central Alr Conditioning model required a 2.5 ton unit to meet the cooling load (Relerence 2) air handler is in the basement and supply ducts and return ducts are assumed to be in majority interior space
Windows
61% of homes have double pane windows (Reference 2)
double pane low- E are standard (Relerence 4)
Model isssumes 15% of wall area glazing
applied a u-factor of 0.53 (average beween clear glass double pane and low-E)
Insulation Levels:
Existing Ceiling Insulation: R-19 (Reference 4)
Existing Well Insulation: R-1 1 (Reference 4)
Basement Assumptions
Assumed basement walls to have R-11 insulation
Basement is considered firished space but not condilioned
The alr handier is located in the basement
Some homes will have smaller sections of the basement conditioned - maybe a bonus room etc, however this cannot be easily modeled in EnergyGauge
Appllances (Reference 2)
85\% have dishwashers
74\% electric ranges
88\% and 89\% have clothes washer and dryer (electric)
85% water heating is gas - model used a 40 gallon storage tank
B8\% of hnmes have ceiling fans
Average Customer Energy Consumption: (Reierence 2)
kWh annually: 9,000 roughly for a 2,000 square foot home
Therms annually: 835
References:

1. California Energy Commisslon's Database for Energy Efficient Resources (DEER) http/hww.energy.ca.gov/deer

Ooes nol include labor of equipment rental fees as this measure is considered a replace on burnout)
2. 2006 Residential Energy Use Colarado Sevice Area - Xcel: Bruce Neilson
3. American Housing Survey for Denver - US Census Bureau
4. Xcel Eriergy CO OSM Potentlal 2006 - prepared by Kema
5. Califorria Measurement Advisory Committee (CALMAC) Protocols, Appendix F.

APPENDIX C

PUBLIC SERVICE COMPANY OF COLORADO

\qquad
Cancels
P.O. Box 840

Denver, CO 80201-0840

NATURAL GAS RATES
 DEMAND-SIDE MANAGEMENT COST ADJUSTMENT

APPLICABILITY

All rate schedules for natural gas service are subject to a DemandSide Management Cost Adjustment ("DSMCA") designed to recover the direct and indirect costs of Demand-Side Management Programs ("DSM Programs") in accordance with Commission-approved Demand-Side Management Plans and Rules 4750 through 4760 of the Commission's Rules Regulating Gas Utilities and Pipeline Operators, 4 Code of Colorado Regulations 723-4 ("Gas DSM Rules"). The DSMCA shall apply to all base rates for all applicable rate schedules and are as set forth on Sheet No. 42D.

ANNUAL FILINGS

Effective January 1, 2009, the Company shall place into effect a new DSMCA pursuant to the Commission's final order on Company's 2009-10 DSM Plan and shall include Current Period DSM Costs incurred on and after January 1, 2009, plus all DSM costs incurred by Company prior to January 1, 2009 in accordance with its prior DSMCA.

The Company will file an advice letter to revise the DSMCA on April 1 to be effective July 1 through December 31 of the same year and on October 1 to be effective January 1 through June 30 of the next year. The October 1 filing will revise DSMCA for Current Period DSM Costs forecasted for the following year and the April 1 filing will revise the DSMCA for the Prior Demand-Side Management Cost Adjustment ("PDSMCA"), the DSM Bonus and the DSM Deferred amount from the preceding year, including applicable DSM Interest. The Company will include in its annual DSMCA filings all pertinent information and support documentation as is required by the Commission's Rules and as specifically set forth in Gas DSM Rules.

DEFINITIONS

DSM Bonus
The amount of bonus approved by the Conmission in the Company's annual DSM Report as set forth in Gas DSM Rule 4760.

Current Period Demand-Side Management Costs (CDSC)
The CDSC are projected calendar year expenditures for the Company's DSM Portfolio after January 1, 2009, including all direct and indirect costs. The CDSC shall comprise costs of DSi programs directed at residential customers and costs of DSM programs directed at nonresidential customers and shall be expenses and recovered over twelve months beginning January 1 of the year in which the costs are expected to be incurred.
(Continued on Sheet No. 42A)

ADVICELET NUMBER		ISSUE DATE	
DECISION NUMBER	MANAGING DIRECTOR Govermment \& Regulatory Affairs	effective DATE	January 1, 2009

DEFINITIONS - COnt'd

DSM Interest
The amount of net interest accrued on the average monthly balance in gas DSM subaccounts of Account No. 186, whether positive or negative, as determined by multiplying the monthly balance by an interest rate equal to the Company's Commission-authorized after tax weighted average cost of capital. DSM Interest shall be calculated separately for the deferred balances associated with the Residential DSMCA and the Nonresidential DSMCA.

DSM Portfolio
The energy efficiency programs as approved by the Commission in the Company's DSM plan filings as required under the Gas DSM Rules. The DSM Portfolio shall comprise DSM programs directed at residential and nonresidential customers.

RESIDENTIAL DSMCA
The DSMCA for residential service ("RDSMCA") shall be a percentage adjustment applicable to all base rates for customers receiving service under rate Schedule RG and shall be calculated as follows:

$$
\text { RDSMCA }=\frac{\text { RDSM Cost }+ \text { RDSM Deferred }+ \text { RDSM Bonus }}{R \text { CCount } * \text { RS\&F + R Sales * R Rate }}+\text { PDSMCA }
$$

Where:

1) RDSM Cost is the CDSC of residential DSM Programs for the following calendar year revised annually by a october 1 filing
2) RDSM Deferred is the positive or negative difference between the projected cost of residential DSM Programs and amounts collected from residential customers during the prior calendar year, including DSM Interest, revised annually by a April 1 filing
3) RDSM Bonus is the residential allocated portion of the total DSM Bonus from the previous calendar year revised annually by a April 1 filing
4) R CCount is the Company's forecasted residential customer count for the twelve calendar months following the effective date of the RDSMCA
5) RS\&F is the Service and Facility Charges applicable for residential service in effect on the effective date of the RDSMCA
(Continued on Sheet No. 42B)

ADVICE LET NUMBER		ISSUE DATE	
DECISION NLMBER	MANAGING DIRECTOR, Govemment \& Regulalory Affatrs	EFFECTIVE DATE	January 1, 2009

NATURAL GAS RATES
 DEMAND-SIDE MANAGEMENT COST ADJUSTMENT

6) R Sales is the Company's forecasted residential usage (Schedules CG and IG separately) in therms for the twelve calendar months following the effective date of the RDSMCA
7) R Rate is the Usage Charge per therm applicable for residential service in effect on the effective date of the RDSMCA

NONRESIDENTIAL DSMCA

The DSMCA for nonresidential service ("NDSMCA") shall be a percentage adjustment applicable to all base rates for customers receiving service under rate Schedules $C G$ and $I G$ and shall be calculated as follows:

$$
\text { NDSMCA }=\frac{\text { NDSM Cost }+ \text { NDSM Deferred }+ \text { NDSM Bonus }}{N \text { CCount } * \text { NS\&F }+N \text { Sales } * \hat{N} \text { Rates }}+\text { PDSMCA }
$$

Where:

1) NDSM Cost is the CDSC of nonresidential DSM Programs for the following calendar year revised annually by a October 1 filing
2) NDSM Deferred is the positive or negative difference between the projected cost of nonresidential DSM Programs and amounts collected from nonresidential customers during the prior calendar year, including DSM Interest, revised annually by a April 1 filing
3) NDSM Bonus is the nonresidential allocated portion of the total DSM Bonus from the previous calendar year revised annually by a April 1 filing
4) N CCount is the Company's forecasted nonresidential customer count for the twelve calendar months following the effective date of the NDSMCA
5) NS\&F is the Service and Facility Charges applicable for nonresidential service (Schedules CG and IG separately) in effect on the effective date of the NDSMCA
6) N Sales is the Company's forecasted nonresidential usage (Schedules CG and IG separately) in therms for the twelve calendar months following the effective date of the NDSMCA
7) N Rate is the Usage Charge per therm applicable for nonresidential service (Schedules CG and IG separately) in effect on the effective date of the NDSMCA
(Continued on Sheet No. 42C)
ADVICE LETTER
NUMBER

DECISION
NUMBER

$$
\text { PDSMCA }=\frac{A * B+C+D}{E}
$$

Where:

1) A is the Prior DSM Program amortized balance at year end of the previous calendar year as amortized over a five year period
2) B is the Commission-authorized gas rate of return
3) C is the grossed up income tax amount on $A * C$
4) D is the amortization expense of the prior DSM program deferred costs
5) E is the total gas base rate revenue for the prior calendar year
(Continued on Sheet No. 42D)

ADVICE LETTER
NUMBER

N
NUMBER
\qquad

APPENDIX D

CERTIFICATE OF SERVICE

I hereby certify that on the 28th day of October 2008, the original and seven (7) copies of the STIPULATION AND SETTLEMENT AGREEMENT were served via hand delivery in Docket 08A-366EG to the following:

Doug Dean, Director
Colorado Public Utilities Commission
1560 Broadway, Suite 250
Denver, CO 80202
and copies were hand delivered or served via United States Mail and served via email on all Parties on this service list.

Bill Vidal
Manager of Public Works
201 W. Colfax, Dept. 608
Denver CO 80202
Russell W. Ray, PLLC
6212-A Old Franconia Road
Alexandria, VA 22310
*Holly Rachel Smith, Esq.
Wal-Mark \& Sam's West
holly@raysmithlaw.com
Anne K. Botterud
Office of Attorney General
1525 Sherman St., $5^{\text {th }}$ Floor
Denver, CO 80203
Anne.botterud@state.co.us
Christopher M. Irby Office of Attorney General Chris.irby@state.co.us
P.B. Schechter

Office of Consumer Counsel
Pb.Schechter@dora.state.co.us
Stephen W. Southwick
Office of Attorney General
Stephen.southwick@state.co.us
Dale.hutchins@state.co.us
Chere.Mitchell@dora.state.co.us

Mariya Barmak
Becky Bye
Advisory Counsel
Mariva.barmak@state.co.us
Becky.bye@state.co.us
Jeff Ackerman
Advisory Staff
1560 Broadway, \#250
Denver, CO 80202
Jeffrev.ackerman@dora.state.co.us

Thorvald A. Nelson
Robyn A. Kashiwa
Colorado Energy Consumers
tnelson@hollandhart.com
rakashiwa@hollandhart.com
Koriley@hollandhart.com
Ron Davis
Paul Caldara
Karl Kunzie
Billy Kwan
Trial Staff
Ronald.davis@dora.state.co.us
Paul.caldara@dora.state.co.us
Karl.kunzie@dora.state.co.us
Billy.kwan@dora.state.co.us

Karl F. Kumli, III
*Mark Detsky
Paul Kriescher
Robert Bowles
Energy Efficiency Business Coalition
kark@dietzedavis.com
mdetsky@gmail.com
paulk@lightlytreading.com
Robert@energyefficiencybusinesses .org

Jerry W. Goad
National Resources \& Envir. Jerry.goad@state.co.us

Morey Wolfson
Governor's Energy Office
Morev,wolfson@state.co.us
Richard L. Fanyo
Mark A. Davidson
Michelle Brandt King rfanyo@duffordbrown.com mdavidson@duffordbrown.com
mking@duffordbrown.com
Michael L. Kurtz
Kurt J. Boehm
Kroger Company
mkurtz@BKLlawfirm.com
kboehm@BKLlawfirm.com
Howard Geller
Southwest Energy Efficiency Project hgeller@swenergy.org

Steven S. Michel
Victoria R. Mandell
Western Resource Advocates
smichel@westernresources.org
vmandel@westernresources.org

Leslie Glustrom
Iglustrom@gmail.com
Nancy LaPlaca nancylaplaca@yahoo.com

John Baeverstad
John.b@viplighting.com
Sue Ellen Harrison
Jonathan Koehn
Sarah Van Pelt
Leslie Lacy
Ann Livingston
Boulder, City and County harrisons@bouldercolorado.gov
koehni@bouldercolorado.gov vanpelts@bouldercolorado.gov
llacy@bouldercounty.org
alivingston@bouldercounty.org
Ronal W. Larson
Ratepayers United of Colorado rongretlarson@comcast.net

Jeffrey G. Pearson
Jennifer Gremmert
Energy Outreach Colorado
Jgplawqwest.net igremmertoenergyoutreach.org
G. Harris Adams

Administrative Law Judge
Harris.adams@dora.state.co.us

[^0]: ${ }^{1}$ These expected demand reductions do not include the expected impacts from Public Service's Interruptible Service Option Credit (ISOC) program or the expected impacts from a third-party demand

[^1]: response contract, both of which have been addressed in separate dockets.

[^2]: ${ }^{2}$ The Commission established electric energy savings goals for the Company in Decision C08-0560 in Docket No. 07A-420E.

[^3]: Changes From 2008:
 This is a nisw program for 2009

